找回密码
 欢迎注册
查看: 46134|回复: 12

[讨论] 好像是一道简单的高中题目

[复制链接]
发表于 2009-7-29 20:23:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
n是一个正整数,$a_1,a_2,...,a_k(k>=2)$是{1,2,…,n}中的不同整数,并且n整除$a_i(a_{i+1}-1)$对于所有i=1,2,…,k-1都成立, 证明:$a_k(a_1-1)$不能被n整除。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-29 20:27:02 | 显示全部楼层
高中时候真没做过这么“简单”的题目啊。。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-29 20:44:39 | 显示全部楼层
本帖最后由 nlrte13 于 2009-7-29 20:47 编辑

可以反证^^
首先容易得到a1不等于1,
若 ak(a1-1)能被n整除,则
(a1-1)(a2-1).....(ak-1)(a1)(a2)(ak)能被n^k整除
即在{2, 6, 12, 20, 30, ..., n(n-1) }中取k个不同的数相乘,结果能被n^k整除,显然这是不可能的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-29 21:37:05 | 显示全部楼层
证明错误
比如n=6,k=3,
{1*2,2*3,3*4,4*5,5*6}中我们可以选择(2*3),(3*4),(5*6)这三个数,它们乘积可以被6^3整除

评分

参与人数 1鲜花 +1 收起 理由
数学星空 + 1 数学直觉好,观察力很强

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-29 21:45:47 | 显示全部楼层
证明错误 比如n=6,k=3, {1*2,2*3,3*4,4*5,5*6}中我们可以选择(2*3),(3*4),(5*6)这三个数,它们乘积可以被6^3整除 mathe 发表于 2009-7-29 21:37
mathe哥说的对^^
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-29 21:52:42 | 显示全部楼层
{
1, 2, 3, 4, 5, 6...
2, 4, 6, 8, 10, 12...
3, 6, 9, 12, 15, 18...
4, 8, 12, 16, 20, 24...
5, 10, 15, 20, 25, 30...
6, 12, 18, 24, 30, 36...
...................................
}
要选择不同行也不同列的k个
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-26 13:08:07 | 显示全部楼层
反证:
若n|(A1-1)*Ak,
则有:n^k|A1*A2*...*Ak*(A1-1)*(A2-1)*...*(Ak-1)(*)
易知:若一个正整数a<=n,则如果(n,a)<>1,则(n,a-1)=1
从而在A1,A1-1,A2,A2-1,...Ak,Ak-1中至多有k个数与n不互质,而且这k个数显然都<=n,则易见(*)式不可能成立
mathe说的那个反例好像不满题中条件吧,不满足并且n整除Ai*(Ai+1-1)对于所有i=1,2,…,k-1都成立
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-26 15:10:31 | 显示全部楼层
则如果(n,a)<>1,则(n,a-1)=1
--------------------------------------------
这也个是错误的,如n=6,a=3,(n,a)=3,(n,a-1)=2

至于反例不满足题目的条件,这个是自然的,不然题目就错了。反例说的是前面证明的方法不对。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-26 16:17:51 | 显示全部楼层
mathe哥? 呵呵,这个称呼有点猫扑的味道。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-26 16:29:43 | 显示全部楼层
呵呵,那个证明有点随意了。
改一个地方:若一个正整数a<=n,则如果(n,a)=d1,(n,a-1)=d2,则d1*d2<=n
因为d1|n,d2|n,(d1,d2)=1,则d1*d2|n,从而d1*d2<=n,这个应该就对了吧
这样(A1*(A1-1),n)=d1*d2<=n,且易见对与k>=2,必存在i,1<=i<=k,s.t.(Ai*(Ai-1),n)<n,从而原证明的(*)成立
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 01:37 , Processed in 0.026145 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表