找回密码
 欢迎注册
查看: 37966|回复: 16

[求助] 如何确定该递推式的初值,使其单调递增?

[复制链接]
发表于 2012-6-17 19:39:54 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
数列$b_n$、$c_n$的初值如下: $b_0=1$ $c_0=a-1$ 递推式如下: $b_{i+1}=(a-1)c_i-b_i/a^3$ $c_{i+1}=(a^2-2a)c_i-((a+2)b_i)/a^2$ 我们希望数列${b_n}$、${c_n}$都是单调递增的。 问:$a$的最小值是多少?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-19 16:28:06 | 显示全部楼层
a>3.037020661082984366816741397 方程a^4 - 3*a^3 - a + 2的最大正根
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-19 20:40:24 | 显示全部楼层
收敛速度好慢啊, 算到第100项,是 2.7458705684975073

评分

参与人数 1鲜花 +2 收起 理由
KeyTo9_Fans + 2 算得真准,下一项就不递增了:P

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-6-19 20:45:15 | 显示全部楼层
$2#$ mathe: 如何得到上述方程? 另外,$a=3$不也单调递增么? ##### $3#$的结果使得前$100$项递增,第$101$项就不递增了……
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-19 21:23:17 | 显示全部楼层
4# KeyTo9_Fans 在计算过程中发现,只要c单调递增,则b也单调递增。 于是,接下来就直接计算c单调的情形,再结合矩阵的幂运算,可进一步提高计算速度。 算到第 5000项, 答案是 2.74589076649+
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-20 10:22:51 | 显示全部楼层
a=3时,c0=2,c1=17/9<2呀,是不是b0,c0不用管?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-20 10:32:15 | 显示全部楼层
我不知道是否我理解有误,我们可以写成 $X_i=[(c_i),(b_i)],X_0=[(1),(a-1)]$ $M=[(a-1,-1/a^3),(a^2-2a,-(a+2)/a^2)]$ 于是$X_i=M^iX_0$ 我们要求向量$X_{i+1}-X_i$的所有分量都非负。实际计算发现检查前几项就可以了 如果不考虑$X_0$到$X_1$的递增性,我找到结果是a>2.540745731684290963599145158就可以了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-20 10:40:37 | 显示全部楼层
原来是我将矩阵弄错了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-20 11:06:23 | 显示全部楼层
设函数列$v_0=a-1,v_1=a^6-3a^5+2a^4-a^2-2a$ $v_{n+1}=(a^5-2a^4-1)v_n-a^6v_{n-1}$ 那么猜测除了0以外,$v_{n+1}$的根比$v_n$正好多一个,而且$v_n$的所有正根都在$v_{n+1}$两个根之间。 当然,本题的极限就是$v_n$的最大正根在n趋向无穷时的极限
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-20 12:17:10 | 显示全部楼层
只需考虑c的单调性。 算出关于c的特征方程。 画出根轨迹图 Untitled-1.png 得知,取极限的时候,特征根的判别式为0. 于是该值是1 + 4 a^4 - 2 a^5 - 4 a^6 + 4 a^8 - 4 a^9 + a^10 = 0 的最大根 2.7459375351847633654210619841592219932277961265538

评分

参与人数 1威望 +4 贡献 +4 鲜花 +4 收起 理由
KeyTo9_Fans + 4 + 4 + 4 有才!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 12:19 , Processed in 0.029991 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表