xiugakei 发表于 2008-12-25 20:53:40

等幂和问题(经典的吐血数学)

现在请看两组自然数,每组各有三个数,每个都是六位数字。把这两组数分别相加,就会发现它们的和是完全相等的,即:
  123789+561945+642864 =242868+323787+761943
  这样的性质,自然算不上什么稀罕。可是,要知道它们各自的平方之和也是相等的,那就是说:
  123789×123789+561945×561945+642864×642864
  =242868×242868+323787×323787+761943×761943
  如果不信,请算一算吧!算过以后,你也许会伸伸舌头,说一声:“妙啊!”
  且慢,真正的妙事还在后头呢!请把每个数的最左边一位数字都抹掉,你会发现,对剩下的数来说,上述的奇妙关系仍然成立,即:
  23789+61945+42864=42868+23787+61943
  23789×23789+61945×61945+42864×42864=42868×42868+23787×23787+61943×61943
  事情真怪。让我们再抹掉每个数最左边的一位数字试试看吧!通过计算,上述性质依然保存着:
  3789+1945+2864=2868+3787+1943
  3789×3789+1945×1945+2864×2864=2868×2868+3787×3787+1943×1943
  现在,我们索性一不做、二不休,继续干下去了。我们发现,尽管每次抹掉最左边的一位数字,可是这种奇妙的性质总是被“原封不动”地保存了下来:
  789+945+864=868+787+943
  789×789+945×945+864×864=868×868+787×787+943×943
  89+45+64=68+87+43
  89×89+45×45+64×64=68×68+87×87+43×43
  直到最后只剩下个位数,这一“性质”依旧“巍然不动”:
  9+5+4=8+7+3
  9×9+5×5+4×4=8×8+7×7+3×3
  这就像“金蝉脱壳”一般,脱到最后一层,金蝉却还是货真价实的金蝉,其“个性”可谓“至死不变”矣。
  现在我们还是从原来的两组数出发,可是这一次却“反其道而行之”,即把两组数的数字逐个逐个地从右边抹掉。
  经过这样的剧烈变动,这种性质总不见得保持下来了吧?可是,与人们预料的相反,这种性质居然还是保存了下来:
  12378+56194+64286=24286+32378+76194
  12378×12378+561948×561948+64286×64286=24286×24286+32378×32378+76194×76194
  ……
  直到最后抹得只剩下个位数时也是如此:
  1+5+6=2+3+7
  1×1+5×5+6×6=2×2+3×3+7×7
  这类问题在数论上叫做“等幂和问题”,在国内外,它一直吸引着大批爱好者,但至今仍未能彻底解决。
来自http://baike.baidu.com/view/308684.htm

gxqcn 发表于 2008-12-25 20:59:26

这个以前已发过一遍:http://bbs.emath.ac.cn/thread-147-1-1.html
且在那里的2#我给出了“金蝉脱壳”的本质规律。

medie2005 发表于 2008-12-25 21:24:56

呵呵,又吐了一次血.
页: [1]
查看完整版本: 等幂和问题(经典的吐血数学)