无心人 发表于 2009-1-18 23:00:47

由互不相同的数字全排列组成的数的素数

非常不错的资料整理10个数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9全排列组成的数字全部是合数
所以结果是0

2个的情况
最多两个
13, 31
17, 71
37, 73
79, 97

1个的情况是显然的, 2,3,5,7四种情况,最多1个

无心人 发表于 2009-1-18 23:23:07

3个数字的, 最多能组成4个素数
三组结果
[,,]

无心人 发表于 2009-1-18 23:26:16

4个数字, 最多是11个素数
有两组结果
[,]

无心人 发表于 2009-1-18 23:33:08

5个数字组成的, 最多的目前是39个

因为,有点小问题, 结果有重复, 所以暂时不罗列结果了

无心人 发表于 2009-1-19 22:59:47

*Primes List> let permutation [] = [[]]; permutation xs = concatMap (\x -> map (x:) \$ permutation (delete x xs)) xs
*Primes List Bits> let bs=
*Primes List Bits> let p5 = [|a<-bs,b<-bs,c<-bs,d<-bs,e<-bs,a>b,b>c,c>d,d>e]
*Primes List Bits> let num l = foldl (\x y -> 10*x + y) 0 l
*Primes List Bits> let pp l =
*Primes List Bits> let a5 = map pp p5
*Primes List Bits> filter (\l -> length l >= 39) a5
[[98731,98713,98317,97813,97381,93871,93187,91873,91837,91387,89371,89317,89137,
87931,83791,83719,81973,81937,79813,78193,78139,73819,73189,71983,71389,38971,38
917,38791,38197,37189,19387,18973,18793,18397,18379,17839,17389,13879,13789]]

5个数字的确实只能存在最多39个素数
而且只有一组,9,8,7,3,1组成的

无心人 发表于 2009-1-19 23:13:08

6个数字的最多是148个素数
974321组成
[[974213,974123,973421,972431,943127,942371,942317,941723,937421,937241,934721,9
34127,932471,932417,927431,924731,924713,924173,923471,923147,921743,917243,9147
23,914327,914237,913247,794231,792413,743921,743129,742913,742193,739241,734291,
732491,731249,729413,729143,723491,721439,712493,493721,493217,493127,492731,491
327,491273,479231,473219,472391,472319,472193,472139,471923,439217,437219,431729
,431297,429731,429137,427913,423791,423179,421973,421739,421397,417293,417239,41
2793,412739,412397,394721,394271,392741,391247,374291,374219,372941,372149,37124
9,347129,342971,342791,342197,342179,341927,341729,329471,327941,327491,327419,3
24791,324179,321947,319427,314927,294731,294317,293147,291743,291437,279431,2794
13,279143,274931,274139,273941,273149,249317,247913,247391,247193,243917,243197,
241973,241793,241739,239417,239147,234917,234791,234197,231947,231479,219437,217
439,213947,197423,197243,194723,193247,192743,192347,179243,174329,173429,173249
,172439,147293,143729,142973,132947,132749,129347,127493,124793,124739,123479]]

无心人 发表于 2009-1-19 23:24:32

7个不同数字组成的素数, 最多的是731个
由9875321组成
[[9875321,9871523,9857321,9857213,9857123,9851327,9837521,9837251,9835127,983251
7,9832157,9831527,9825731,9825713,9825173,9823157,9817253,9815237,9813527,981257
3,9785213,9782351,9753281,9735821,9728153,9723851,9721853,9712583,9587213,958327
1,9583127,9581723,9572183,9571283,9531827,9527813,9523781,9521873,9521387,951872
3,9518237,9512873,9387251,9385721,9382517,9382157,9381257,9375281,9352817,935278
1,9351827,9328157,9325817,9325187,9321857,9318527,9315827,9285371,9285173,927853
1,9278513,9275381,9273851,9273581,9271583,9258731,9257813,9253187,9251873,925138
7,9237581,9235871,9235781,9218537,9218357,9217583,9215837,9213857,9213587,918752
3,9185723,9185237,9182573,9178523,9175823,9158273,9157283,9152837,9138527,913285
7,9127583,9125387,8973521,8957231,8952731,8951273,8937521,8932751,8927153,892571
3,8925317,8923571,8923157,8921573,8917523,8917253,8915723,8912537,8912357,879523
1,8795123,8793251,8792513,8792351,8791253,8759123,8753291,8753219,8751329,873529
1,8732159,8731529,8725931,8725391,8725319,8725139,8723951,8721539,8721359,871925
3,8597321,8597213,8597123,8593127,8591327,8591237,8537219,8532971,8532917,853217
9,8531279,8529317,8529173,8527913,8527391,8527193,8523917,8523719,8521739,852139
7,8519723,8519237,8513927,8512793,8512739,8395721,8395217,8392157,8375291,837295
1,8372591,8372519,8371529,8359271,8359217,8329157,8325719,8325179,8319527,831925
7,8317259,8315927,8315729,8312957,8297351,8295317,8295137,8293751,8291573,829135
7,8275391,8259137,8251937,8251379,8239571,8239157,8237951,8235791,8219357,821735
9,8215973,8215793,8215397,8215379,8195273,8193527,8193257,8192357,8172953,817253
9,8157329,8157293,8152379,8135927,8135279,8132759,8127593,8125973,8123597,798512
3,7982153,7958231,7958213,7953821,7952831,7952183,7938251,7932851,7932581,792835
1,7928153,7915283,7893521,7892531,7892513,7892153,7891523,7853921,7853291,785312
9,7852931,7852319,7851923,7851329,7851293,7835129,7832159,7831259,7829513,782935
1,7825193,7823951,7812953,7598231,7581923,7539821,7532981,7531829,7529831,752981
3,7529381,7523819,7523189,7521893,7513829,7512893,7395821,7392851,7385291,738521
9,7382951,7381259,7358291,7352819,7351829,7329851,7328591,7318529,7315829,731285
9,7295381,7293851,7289531,7285391,7285139,7283951,7281539,7258319,7253819,725318
9,7251983,7251389,7239851,7239581,7238519,7215893,7213859,7198523,7195823,719528
3,7189253,7158329,7153829,7152389,7132859,7129583,7125983,5987231,5983127,598273
1,5982371,5982173,5981237,5978213,5972381,5938217,5928173,5918723,5918273,591782
3,5912873,5897123,5893721,5893127,5892371,5892137,5879231,5879213,5879123,587312
9,5872931,5872913,5872319,5837219,5832719,5831927,5831729,5829137,5827931,582719
3,5823971,5823179,5821793,5819327,5819237,5817293,5817239,5812397,5812379,579821
3,5798123,5782391,5782319,5781239,5739821,5739281,5732189,5731829,5731289,572918
3,5728913,5728391,5728319,5723891,5723819,5721839,5721389,5719823,5713289,571298
3,5712893,5712389,5398271,5392817,5389721,5389271,5382917,5381927,5381297,537928
1,5378921,5329781,5329187,5327891,5321879,5319287,5318927,5312897,5298173,529781
3,5291837,5287913,5283791,5281937,5281379,5279831,5278913,5278139,5273981,527381
9,5273189,5271839,5239187,5238791,5238179,5231987,5219783,5218937,5218793,521839
7,5198273,5197823,5192783,5192387,5187293,5187239,5183729,5183279,5182379,517892
3,5173829,5138279,5137829,5129837,5128973,5127839,5123879,3987521,3985721,398521
7,3982157,3975281,3972851,3958217,3928157,3925781,3897521,3895721,3895127,389275
1,3892571,3891527,3872591,3859127,3857921,3852917,3851279,3829751,3829157,382751
9,3825179,3821579,3819527,3817259,3815927,3812759,3798521,3798251,3785291,378259
1,3752981,3751289,3729581,3728591,3721859,3718259,3712589,3597281,3589721,358279
1,3582179,3581927,3579281,3578129,3572819,3572189,3571289,3529817,3529187,352798
1,3527819,3519287,3517289,3512987,3298517,3289571,3285719,3285197,3278519,327589
1,3275819,3275189,3258719,3219857,3215879,3215789,3198257,3185729,3185279,318295
7,3182759,3158297,3157829,3152987,3128579,3125789,2985713,2985317,2981753,298135
7,2975813,2975183,2958713,2958173,2957831,2953817,2951873,2938571,2938517,293758
1,2935871,2935817,2931587,2918537,2917853,2915837,2913587,2895371,2893157,289157
3,2879351,2875913,2871359,2859713,2859173,2859137,2857931,2857913,2857319,285379
1,2853197,2851973,2851397,2837951,2837519,2835971,2819753,2817593,2817539,281597
3,2815937,2815793,2815739,2813579,2798513,2798351,2795381,2791583,2789351,275831
9,2753819,2753189,2735189,2719583,2715983,2715893,2713589,2598731,2598317,259813
7,2591783,2587913,2587139,2583719,2583179,2581973,2579813,2578931,2578391,257389
1,2571893,2539871,2538971,2538917,2538791,2519873,2518973,2518793,2518379,239815
7,2397851,2397581,2395871,2387951,2387591,2381957,2379851,2378951,2375981,237581
9,2359187,2358179,2357189,2351897,2318957,2318597,2317589,2315897,2189573,218935
7,2187953,2187359,2185973,2185739,2183957,2183579,2178359,2159783,2157893,215783
9,2139857,2137859,1987523,1985237,1983257,1982573,1982537,1978523,1975823,197258
3,1958237,1957283,1952837,1938257,1935827,1935287,1928753,1927853,1925873,192583
7,1925387,1895273,1893527,1892753,1892537,1892357,1879523,1879253,1875239,187295
3,1859327,1857293,1853927,1852973,1852793,1837529,1835297,1829753,1829537,182795
3,1827593,1825937,1825739,1825379,1823957,1823579,1798523,1798253,1785293,175928
3,1758923,1758329,1753289,1752983,1752893,1735829,1732859,1728953,1728593,172853
9,1725389,1598327,1598273,1598237,1597823,1593827,1592387,1589327,1587923,158392
7,1582937,1578293,1573829,1532987,1529387,1528937,1527983,1527893,1527839,152738
9,1523987,1523789,1387259,1382957,1382597,1378529,1358927,1358729,1358297,135298
7,1298573,1298537,1298357,1297853,1295873,1295783,1295387,1293857,1293587,128975
3,1289537,1287593,1285937,1285793,1285397,1283957,1283759,1279853,1279583,127589
3,1275839,1259873,1258973,1258937,1253897,1238759,1238597,1237589,1235987,123587
9,1235789]]

无心人 发表于 2009-1-19 23:30:29

呵呵, 休息了
8,9的明天分析

无心人 发表于 2009-1-20 08:59:19

9个的情况

023456789组成的,是19558个素数
013456789组成的,是26455个素数
012356789组成的,是26285个素数
012346789组成的,是26493个素数
012345689组成的,是19917个素数
012345679组成的,共26519个素数

所以9个的最多26519个素数

无心人 发表于 2009-1-20 08:59:45

8个的情况数据太多了, 共30种情况
只贴上每种情况首素数,和对应的素数个数
[(23456789,3098),(13456879,4192),(12356789,4168),(12364789,4097),(12346589,3194)
,(12345769,4333),(20456789,1818),(20356879,2748),(20345987,2705),(20354689,1817)
,(20345687,1850),(10456987,2793),(10348697,3554),(10345789,3488),(10345679,3637)
,(10346587,2728),(10258967,2805),(10246897,2763),(10248659,1817),(10249567,2741)
,(10238597,3762),(10253869,2699),(10235867,2746),(10234897,3681),(10243769,3741)
,(10238467,2742),(10234589,2812),(10234759,3514),(10245863,1799),(10235647,2668)]

最多4333个
页: [1] 2 3
查看完整版本: 由互不相同的数字全排列组成的数的素数