第n个素数k的极限
第n个素数不好求,一般用黎曼猜想公式反算,可以获得比较高的精度作为参考范围.这里不进行第n个素数的计算比赛,只对一个趋势做出预测,求出第n个素数的极限系数k值.
p(n)≈n×(lnn+lnlnn-k),这里n值和p(n)值都是已知的数据,只有k值未知,代人后
k=lnn+lnlnn-p(n)/n
n值 p(n)参考范围 计算的k值
4 10 -0.787071379
10 29 0.236617538
24 90 0.584322837
25 100 0.387908001
100 541 0.722349812
154 900 0.809598015
168 1000 0.805511381
500 3571 0.899510764
1000 7919 0.921400013
.......
664579 10000000 0.955559154
700000 10570841 0.957269999
800000 12195257 0.957804142
900000 13834103 0.957060924
1000000 15485863 0.955439472
4310144 73473859 0.956066856
.....
2220819602560918840 100000000000000000000 0.959458995
3516585752930430595 160000000000000000000 0.959638155
3731397829842461168 170000000000000000000 0.959661194
3945938652811699917 180000000000000000000 0.9596829
4374267703076959271 200000000000000000000 0.959722871
4588082544160859769 210000000000000000000 0.959741366
5654086442526321042 260000000000000000000 0.959822191
5866733862193360875 270000000000000000000 0.959836454
6503696293016202398 300000000000000000000 0.95987623
6715709842660010419 310000000000000000000 0.9598886
6927578466326617308 320000000000000000000 0.959900571
8617821096373621600 400000000000000000000 0.959984581
在0.95这个数徘徊太久,还在没有迈向0.96
10000000000000000000 465675465116607065549 0.96004168
10720710117789005897 500000000000000000000 0.960068355
12814731195053369962 600000000000000000000 0.960136628
21127269486018731928 1000000000000000000000 0.960327059
41644391885053857293 2000000000000000000000 0.960583407
82103246362658124007 4000000000000000000000 0.96083734
100000000000000000000 4892055594575155744537 0.960910633
201467286689315906290 10000000000000000000000 0.961169232
299751248358699805270 15000000000000000000000 0.961314699
397382840070993192736 20000000000000000000000 0.961417385
783964159847056303858 40000000000000000000000 0.961662996
1925320391606803968923 100000000000000000000000 0.96198374
18435599767349200867866 1000000000000000000000000 0.962769828
176846309399143769411680 10000000000000000000000000 0.96352742281009973617214866335650
1699246750872437141327603 100000000000000000000000000 0.96425691176903836741063255218860
从0.2一直上升,虽然区间有所反复,增大又减小,从0.95开始,增速放缓,但总体趋势明显,就是趋向于1,即k值为1.
所以无穷大时p(n)≈n×(lnn+lnlnn-1)成立
如果一直大下去,比1大,比2大,直至大到lnlnn,这时后两项一减为0,变成了p(n)≈n×lnn这可能吗?
我坚持无穷大时p(n)≈n×(lnn+lnlnn-1) 另一个与它异曲同工的式子
p(n)=n*(ln(n*logn)-k),log是以10为底的对数
举例子:9592*(ln(9592*log9592)-k)≈10^5
k值从一个负值往上升,-1.62...0.089....0.10...0.105...0.11...0.12...0.13
在0.11之间徘徊了好久,才升至0.12,升幅比较缓慢.
n无穷大时,我求得k的极限值:
经过反复计算,这个k值到不了1,极限时,此值为0.16596755475204420019678695214200......
不能比这个再大了
可以用这个定理反推,但精度没有下面的猜想高,
页:
[1]