shufubisheng
发表于 2018-9-3 16:10:38
mathe 发表于 2018-9-1 17:59
函数在x=0取0,而导函数形式直接看出大于0,所以对于x>0,函数大于0
能否在同一坐标系里画出y= (1+1/x)^x 与y= (1+x)^(1/x) 的图象(只要求0≤x≤1的图象)?
lsr314
发表于 2018-9-3 17:40:21
$0< x\leq 1时$, 如果能分别证明这两个不等式,就可以得到想要的结论:
$(1 + x)^(1/x) - 2\leq (5/4 - log(4)) (x - 1) - 1/4 +1/(1 + x)^2 \leq 2 - (1 + 1/x)^x$
shufubisheng
发表于 2018-9-3 18:02:10
lsr314 发表于 2018-9-3 17:40
$0< x\leq 1时$, 如果能分别证明这两个不等式,就可以得到想要的结论:
$(1 + x)^(1/x) - 2\leq (5/4 - lo ...
1、这两个不等式是怎么来的?
2、x→ 0时,左面不等式不成立。
lsr314
发表于 2018-9-3 20:21:58
shufubisheng 发表于 2018-9-3 18:02
1、这两个不等式是怎么来的?
2、x→ 0时,左面不等式不成立。
对的,你再确认一下
shufubisheng
发表于 2018-9-3 23:35:41
lsr314 发表于 2018-9-3 20:21
对的,你再确认一下
x→ 0时,左面不等式成立。问题在于这两个不等式是怎么来的?
shufubisheng
发表于 2018-9-4 17:34:55
lsr314 发表于 2018-9-3 17:40
$0< x\leq 1时$, 如果能分别证明这两个不等式,就可以得到想要的结论:
$(1 + x)^(1/x) - 2\leq (5/4 - lo ...
在证明左边不等式时,遇到一个问题,看你能证明否?https://bbs.emath.ac.cn/thread-15518-1-1.html
shufubisheng
发表于 2018-9-5 13:39:11
lsr314 发表于 2018-9-3 17:40
$0< x\leq 1时$, 如果能分别证明这两个不等式,就可以得到想要的结论:
$(1 + x)^(1/x) - 2\leq (5/4 - lo ...
1、你这两个不等式的中间代数函数,实际上是根据两边超越函数的图象,设计出的中间曲线,以便使用“导数法”证明不等式。
2、因为你设计出的中间代数函数,不满足使用“导数法”进行证明的充分条件,所以无法使用“导数法”证明出你这两个不等式。
lsr314
发表于 2018-9-5 14:28:54
令$f(x)=4-(1+x)^(1/x)-(1+1/x)^x$,
则$f(x)=(1-2 ln(2)^2) (x-1)^2+(-1+2 ln(2)^2) (x-1)^3+1/6 (4+3 ln(2)-9 ln(2)^2-4 ln(2)^3-ln(2)^4) (x-1)^4+O(x-1)^5$
$=0.039094 (x-1)^2-0.039094 (x-1)^3+0.0320718 (x-1)^4+O(x-1)^5$
如果能证明$f(x)$的展开式系数符号是交错的,由于$0 < x <1$时, 上面每一项都是正数,问题就解决了。
mathematica
发表于 2018-9-5 14:52:41
lsr314 发表于 2018-9-5 14:28
令$f(x)=4-(1+x)^(1/x)-(1+1/x)^x$,
则$f(x)=(1-2 ln(2)^2) (x-1)^2+(-1+2 ln(2)^2) (x-1)^3+1/6 (4+3 ln( ...
你第一次让我看到了希望,不过要证明系数符号是交错的,难度不小!
mathematica
发表于 2018-9-5 14:54:38
lsr314 发表于 2018-9-5 14:28
令$f(x)=4-(1+x)^(1/x)-(1+1/x)^x$,
则$f(x)=(1-2 ln(2)^2) (x-1)^2+(-1+2 ln(2)^2) (x-1)^3+1/6 (4+3 ln( ...
能否利用泰勒展开的
拉格朗日(Lagrange)余项
来证明呢?