a^3+nab+b^3=c^3
提问:\(a,b,c\) 是正整数,\(a^3+nab+b^3=c^3\),\(n\) 能跑遍所有正整数吗? https://mathoverflow.net/questions/138886/which-integers-can-be-expressed-as-a-sum-of-three-cubes-in-infinitely-many-ways 告诉我们x^3+y^3+z^3=1有无穷种整数解,其中参数t是负数的情况三整数俩负一正。也就是有无穷组正整数x^3+y^3+1=z^3
然后另a=nx^2y,b=nxy^2,c=nxyz
于是a,b,c满足题目条件
页:
[1]