类似于调和平均数的分数数列
一个分数数列的极限值受这个帖子的启发,想问一下这个有理分数数列有没有极限值?
\[
\dfrac{1}{2+3}\quad,\quad
\dfrac{1}{\dfrac{2}{4+5}+\dfrac{3}{6+7}}\quad,\quad
\dfrac{1}{\dfrac{2}{\dfrac{4}{8+9}+\dfrac{5}{10+11}}+\dfrac{3}{\dfrac{6}{12+13}+\dfrac{7}{14+15}}}
\] 没有。n行数据计算如下:
1 1.000000000
2 0.200000000
3 2.207547170
4 0.095630236
5 4.513849034
6 0.047309790
7 9.076483497
8 0.023592907
9 18.177286868
10 0.011788741
11 36.366724604
12 0.005893408
13 72.739523509
14 0.002946583
15 145.482084028
16 0.001473277
17 290.965686543
18 0.000736636
19 581.932132327
20 0.000368318
21 1163.864644275
22 0.000184159
23 2327.729478359
24 0.000092079
25 4655.459051624
26 0.000046040
27 9310.918150700
28 0.000023020
单数行趋于无穷大,双数行趋于0 相邻两项的积分单双趋于某个数值:
0.2
0.441509434
0.211108257
0.431660448
0.21354925
0.429406528
0.214140631
0.428855039
0.214287327
0.428717897
0.214323946
0.42868369
0.214333043
0.428675036
0.214335408
0.428673054
0.214335799
0.428672158
0.214336079
0.428672298
0.214336149
0.428672333
0.214335003
0.428670014
0.214337335
0.428674672
0.214337336
每个最底层的分数是 \(\frac{n}{2n+(2n+1)}\)。
页:
[1]