KeyTo9_Fans 发表于 2019-8-29 09:29:08

趣题:10^x=x^10

妙解1:x=10
妙解2:x=1.3713...

还有别的妙解吗?

mathe 发表于 2019-8-29 09:40:37

-0.82667131559077791625932534465569231511

mathe 发表于 2019-8-29 09:44:51

0.081719872878068006005805236238447276845 + 1.0157127340428798701853927276973904638i
0.80986598863207139891037328104174103129 + 0.89226626320000313449126146109255999438i
-0.72943881683140507073479637012539935288 + 0.42731722743915859889894971064296507034i
-0.43194045480509502196424127755338991831 + 0.79564202937957531802879947548881119171i

mathe 发表于 2019-8-29 10:10:32

30.232408193958349660628187635748553116 + 1054.5384483655033830268267112790203997i
33.061180755756871729585180100004756182 + 2023.2991743303705876062699139248827999i
30.649721578527980234483477817848949885 + 1160.9696495422453794893448017457121572i
24.033610453239214802107567701475267386 + 251.99667599980906044891454001708644379i
20.476941278784567432593743652731257941 + 109.71313425622824044544463793482398426i
19.124415129020576940202418320504219724 + 79.472611799545628053152881918796278084i
29.845009353758285761392871063016574186 + 964.47973628310369546126276287665011256i
好像无穷无尽

mathe 发表于 2019-8-29 10:40:42

根据儒歇定理,取$f(x)=x^10,f(x)+g(x)=x^10-10^x$,于是在复平面中$|x|<=2$的区域里面$f(x)=0$只有10重根,所以在$|x|<=2$以内$x^10-10^x=0$也是10个根,1~3中的解和3#中解的共轭给出了所有这些结果。
而且容易看出$2<|x|<10$无解,但是对于$|x|>=10$,有无穷个解

mathematica 发表于 2019-8-29 11:35:34

我只会画图,然后用牛顿迭代法,
FindRoot
{x -> -0.826671}
FindRoot
{x -> 1.37129}
FindRoot
{x -> 10.}

mathematica 发表于 2019-8-29 11:39:02

Plot - 10 Log], {x, -20, 20}]
取对数,但是用绝对值,增长慢一点,容易看出只有三个解,
要严格证明的话,只能用分析的办法了!

mathematica 发表于 2019-8-30 16:54:34

mathe 发表于 2019-8-29 10:10
30.232408193958349660628187635748553116 + 1054.5384483655033830268267112790203997i
33.0611807557568 ...

请问你的解是怎么来的?
我只会用牛顿迭代法,
FindRoot[10^x - x^10, {x, 1000 + 1000*I}, WorkingPrecision -> 30,
MaxIterations -> 10000]

{x -> 30.0017697186801008361313628522 +
   999.957604888848949605079776110 I}
这个结果似乎与你上面的都不一样呀

mathematica 发表于 2019-8-30 16:55:46

In:= FindRoot[10^x - x^10, {x, 1000 - 1000*I},
WorkingPrecision -> 30, MaxIterations -> 10000]

Out= {x ->
30.0017697186801008361313628522 - 999.957604888848949605079776110 I}
又找了一个不一样的,
不知道你的根是怎么来的,我除了牛顿迭代法,别的都不会了!

mathematica 发表于 2019-8-30 16:59:34

mathe 发表于 2019-8-29 10:40
根据儒歇定理,取$f(x)=x^10,f(x)+g(x)=x^10-10^x$,于是在复平面中$|x|

In:= FindRoot[10^x - x^10, {x, 60 - 20*I}, WorkingPrecision -> 30,
MaxIterations -> 1000]

Out= {x ->
13.9605975460322700375633095069 - 20.6085727928362809543602039345 I}
又找到一个与你不一样的解
页: [1] 2 3
查看完整版本: 趣题:10^x=x^10