四点的几何难题
Take four distinct points and plot them on a 2D plane. Then connect each pair of points with an edge. There will always be C(4,2) = 6 edges that will be created, no matter the geometry. Now, measure the length of each of these edges. The chances are there a lot of different lengths. The challenge for today is to come up with a geometric arrangement of the points so that there are only two distinct edge lengths.(如果某三个点两两距离相同)正三角形+重心(只有一种可能)
正三角形ABC+BC中垂线上一点D使得DA=DB(两种可能)
否则,不妨设AB=AC而不等于BC正方形
考察DA,DC与DA,DB,若DB=DC,根据假设DB=DC=AB=AC且BC=AD,这是正方形(只有一种可能)
否则DA=DB与DA=DC必有一个成立,不妨设DA=DC
此时BC=CD=DA,DB=AB=AC,是等腰梯形(只有一种可能)
综上一共有五种图形符合要求:正三角形+重心,正三角形ABC+BC中垂线上一点D使得DA=DB,正方形,以及一个特殊的等腰梯形 论坛老题了,刚好十周年:https://bbs.emath.ac.cn/thread-2041-1-1.html 如何证明?
可分为三类情况进行证明:(1)1+5;(2)2+4;(3)3+3.
页:
[1]