托里拆利点问题
本帖最后由 葡萄糖 于 2020-4-4 17:10 编辑类似于PE143
https://projecteuler.net/problem=143
1844年,Robert Maffett给出了本原整边三角形△ABC的三边 (a, b, c)=(41021, 64161, 76265),
该整边三角形各顶点与等角点F(或称费马-托里拆利点)的距离都为正整数。
若设 a=|BC|, b=|AC|, c=|AB|,并记 x=|BF|, y=|CF|, z=|AF|,则有 (x, y, z)=(31535, 14841, 55440).
其中 a, b, c, x, y, z 满足方程组
\[ \left\{
\begin{split}
\large{x^2+xy+y^2}&\large{=a^2}\\
\large{y^2+yz+z^2}&\large{=b^2}\\
\large{x^2+xz+z^2}&\large{=c^2}
\end{split}\right. \]
【注】本原整边三角形要求三边长为正整数且三边长最大公因数为1
我们可以搜索到满足条件且更小的非本原整边三角形,比如:
(a, b, c)=(399, 455, 511)=(7*57, 7*65, 7*73),(x, y, z)=(264, 195, 325).
【问】是否有更小的本原整边三角形,使得该整边三角形各顶点与等角点F的距离都为正整数? 先求出\(u^2+u v+v^2= s^2\)的通解再搜? 本帖最后由 葡萄糖 于 2020-4-5 19:50 编辑
网友给出一些满足条件的本原整边三角形:
(a, b, c)=
{{1051, 1744, 2045}, {2089, 2405, 3441},
{2917, 5672, 6223}, {12735, 16219, 18296},
{9816, 17549, 19969}, {13480, 17689, 22699},
{8029, 22496, 22979}, {5563, 22192, 24843},
{3913, 26353, 27815}, {28995, 46297, 46543},
{40291, 44555, 50401}, {44099, 45219, 57715},
{38779, 49064, 58359}, {43453, 55608, 62543},
{8971, 62261, 62699}, {35152, 40605, 62797},
{17745, 60961, 68176}, {20039, 67415, 72751},
{51216, 75365, 76171}, {41021, 64161, 76265}} 葡萄糖 发表于 2020-4-5 19:03
网友给出一些满足条件的本原整边三角形:
(a, b, c)=
{{1051, 1744, 2045}, {2089, 2405, 3441},
a,b,c较小的三角形大概就这么多了。
可以用椭圆曲线方法生成无穷多个这样的三角形,比如
x = 187233901308543770274346025779227319413534718528483581117413714139988967289689562608965697080243614520812042013506514780203509810840508690820549161032619299743369103426700514579014311808805204011487447885581687403131824
y = 1040629713660015693021499110116998045995892928708147082347961389055648569135402686799948311802640581094726021993627142173354381796980367248182764233033365899621944415023760124661641270431771651440566880875421260944421376
z = 4464991509691061810093366774156421216006076048801721312278382477873641771866172086709979198188895308623991936390363099150812548231136512418512186280945424032294238760947650256250309796913799353521684363800551406032201245
a = 1145778292627985382209792813683725333917168157933139598885556966360877209788261865756024443200345088335862595211364270649904006743442904468019868470756625674395712937783808507676600824988710222375476294669142147925890224
b = 5066109179517315179271146573030732784353999196170832791574899195684204102385168635805091375542480571483649120321095474595380978314460986621731965907550399547382907406328648357344562963845421375264574262976826018549333789
c = 4561491367423758146243319959715313282766470375556150784331811515002444794763020467427360367443412790879580595449862324312526270646817337482529168275763471213391444305422675044971180052481335947759719510206074760553742891
页:
[1]