一个和小数部分有关的不等式题
已知真分数 `a`,求最小正整数\(x>1\),使得\(\D \{ax\}\leq a/x\), {}表示小数部分。 试一下。构造函数\(\D f(x)=ax-k-a/x\),\(k\)为整数。
\(\D f(x+1)-f(x)=a+\frac{a}{x(x+1)}\gt 0\), 所以\(f(x)\)在\((0,+\infty)\)上单调递增。
令\(f(x)=0\),则\(ax^2-kx-a=0\),考虑到\(x \gt 1\),所以:
\(\D x=\frac{k+\sqrt{k^2+4a^2}}{2a}\) 此时\(\D ax=\frac{k+\sqrt{k^2+4a^2}}{2}\)
显然\(\D k<\frac{k+\sqrt{k^2+4a^2}}{2} <k+1\)
所以 \(\D =k, \{ax\}=\frac{\sqrt{k^2+4a^2}-k}2\). 把原不等式写为:
\(\D =k\)
\(\D ax-k-a/x \leq 0\)
即:\(\D k<ax<k+a/x\)
所以:
\(\D x \in \left[\frac{k}{a},\frac{k+\sqrt{k^2+4a^2}}{2a}\right]\) manthanein 发表于 2020-6-13 18:52
所以:
\(\D x \in \left[\frac{k}{a},\frac{k+\sqrt{k^2+4a^2}}{2a}\right]\)
既然是求最小的大于1的正整数 x,令$k=2$不就OK了?
$x \in \left[\frac{2}{a},\frac{1+\sqrt{1+a^2}}{a}\right]$ northwolves 发表于 2020-6-14 18:12
既然是求最小的大于1的正整数 x,令$k=2$不就OK了?
$x \in \left[\frac{2}{a},\frac{1+\sqrt{1+a^2}}a]$ ...
不一定,如果区间里没有整数就不行了。 manthanein 发表于 2020-6-30 15:08
不一定,如果区间里没有整数就不行了。
若是这样,令`a=p/q`(既约分数), 似乎 $x=\left[\frac{qsqrt(q(4p+1))}{p}\right]$ 拿数据实验一下。
表中各行的各位皆答案x, 相应的p=位号,q=行首。
易知p=1时,x=q, 所以下表各行中首位既是分母q,也是分子p=1时的答案 x。
{2},(*a=1/2的解,x=2*)
{3,2}, (*a=1/3,x=3,a=2/3, x=2*)
{4,2,3}, (*a=1/4, x=4,a=2/4, x=2,a=3/4, x=3*)
{5,5,2,4}, (*a=1/5, x=5,a=2/5, x=5,a=3/5, x=2, a=4/5, x=4)
{6,3,2,2,5},
{7,7,7,2,3,6},
{8,4,3,2,2,3,7},
{9,9,3,9,2,2,4,8},
{10, 5,10, 5, 2, 2, 3, 4, 9},
{11,11,11, 3,11, 2, 2, 3, 5,10},
{12, 6, 4, 3, 5, 2, 2, 2, 3, 5,11},
{13,13,13,13,13,13, 2, 2, 3, 4, 6,12},
{14, 7,14, 7, 3, 7, 2, 2, 2, 3, 4, 6,13},
{15,15, 5, 4, 3, 5,15, 2, 2, 2, 3, 4, 7,14},
{16, 8,16, 4,16, 3, 7, 2, 2, 2, 3, 3, 5, 7,15},
{17,17,17,17,17, 3, 5,17, 2, 2, 2, 3, 4, 5, 8,16},
{18, 9, 6, 9,18, 3,18, 9, 2, 2, 2, 2, 3, 4, 5, 8,17},
{19,19,19,19, 4,19, 3,19,19, 2, 2, 2, 3, 3, 4, 6, 9,18},
{20,10,20, 5, 4,10, 3, 5, 9, 2, 2, 2, 2, 3, 3, 4, 6, 9,19},
{21,21, 7,21,21, 7, 3, 8, 7,21, 2, 2, 2, 2, 3, 4, 5, 6,10,20},
{22,11,22,11,22,11,22, 3, 5,11, 2, 2, 2, 2, 3, 3, 4, 5, 7,10,21},
{23,23,23,23,23, 4,23, 3,23, 7,23, 2, 2, 2, 2, 3, 3, 4, 5, 7,11,22},
{24,12, 8, 6, 5, 4, 7, 3, 3, 5,11, 2, 2, 2, 2, 2, 3, 3, 4, 5, 7,11,23},
{25,25,25,25, 5,25,25,25, 3, 5,25,25, 2, 2, 2, 2, 3, 3, 4, 4, 6, 8,12,24}
实验结果表明, x 不是 a 的一元函数,也不是 p, q 的简单函数。
页:
[1]