记 \(\D2\theta=α, OD_1=1\),扇形半径为`R`,则正方形边长为 \(2\sin\theta\), `OC_1=2\sin\theta\*\cos2\theta/\sin2\theta=\cos2\theta/\cos\theta`
\[\begin{split}
R^2=(D_{2}E_{1})^2+(E_{1}O)^2&=(C_{3}C_{2})^2+(C_{2}O)^2\\
\sin^2\theta+(2\sin\theta+\cos\theta)^2&=(2\sin\theta)^2+(2\sin\theta+\frac{\cos2\theta}{\cos\theta})^2
\end{split}\]结果与5#殊途同归。 本帖最后由 王守恩 于 2020-8-30 10:22 编辑
王守恩 发表于 2020-8-26 01:14
记 \(\D2\theta=α, OD_1=1\),扇形半径为`R`,则正方形边长为 \(2\sin\theta\), `OC_1=2\sin\theta\*\co ...
补充:
\(\D R=\sqrt{\sin^2\theta+(2\sin\theta+\cos\theta)^2}\)
\(\D R=\sqrt{(2\sin\theta)^2+(2\sin\theta+\frac{\cos2\theta}{\cos\theta})^2}\)
\(\D R=\sqrt{(2\sin\theta)^2+1+2*2\sin\theta*1*\cos\theta}\)
\(\D R=\sqrt{(2\sin\theta)^2+(\frac{1}{\cos\theta})^2+2*2\sin\theta*\frac{1}{\cos\theta}*\cos2\theta}\)
\(\D R=\frac{\sin^2\theta}{4x}+x\)
\(\D R=\frac{(2\sin\theta)^2}{4y}+y\)
\(\D R=\frac{\cos2\theta}{\cos\theta}+2\sin\theta+2y\)
\(\D R=\cos\theta+2\sin\theta+2x\)
页:
1
[2]