282842712474 发表于 2009-9-5 16:35:23

测试超长公式

本帖最后由 282842712474 于 2009-9-5 16:36 编辑

$x = -1/2 sqrt(b^2/(4 a^2)+(sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3)/(3 2^(1/3) a)+(2^(1/3) (12 e a-3 b d+c^2))/(3 a (sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3))-(2 c)/(3 a))-1/2 sqrt(b^2/(2 a^2)-(-b^3/a^3+(4 b c)/a^2-(8 d)/a)/(4 sqrt(b^2/(4 a^2)+(sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3)/(3 2^(1/3) a)+(2^(1/3) (12 e a-3 b d+c^2))/(3 a (sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3))-(2 c)/(3 a)))-(sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3)/(3 2^(1/3) a)-(2^(1/3) (12 e a-3 b d+c^2))/(3 a (sqrt((-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^2-4 (12 e a-3 b d+c^2)^3)-72 e a c+27 a d^2+27 e b^2-9 b c d+2 c^3)^(1/3))-(4 c)/(3 a))-b/(4 a)$

http://www.imathas.com/cgi-bin/mimetex.cgi?x%20=%20-1/2%20sqrt(b^2/(4%20a^2)+(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3)/(3%202^(1/3)%20a)+(2^(1/3)%20(12%20e%20a-3%20b%20d+c^2))/(3%20a%20(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3))-(2%20c)/(3%20a))-1/2%20sqrt(b^2/(2%20a^2)-(-b^3/a^3+(4%20b%20c)/a^2-(8%20d)/a)/(4%20sqrt(b^2/(4%20a^2)+(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3)/(3%202^(1/3)%20a)+(2^(1/3)%20(12%20e%20a-3%20b%20d+c^2))/(3%20a%20(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3))-(2%20c)/(3%20a)))-(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3)/(3%202^(1/3)%20a)-(2^(1/3)%20(12%20e%20a-3%20b%20d+c^2))/(3%20a%20(sqrt((-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^2-4%20(12%20e%20a-3%20b%20d+c^2)^3)-72%20e%20a%20c+27%20a%20d^2+27%20e%20b^2-9%20b%20c%20d+2%20c^3)^(1/3))-(4%20c)/(3%20a))-b/(4%20a)

282842712474 发表于 2009-9-5 16:38:19

本帖最后由 282842712474 于 2009-9-5 16:44 编辑

通过直接用\$不能够正常显示,通过直接调用图片可以显示。

看来mimetex.cgi的优越性就在于无论多长的公式都可以解析

谁可以把4次方程的求根公式给一下我,latex代码或者图片都可以

gxqcn 发表于 2009-9-5 16:55:51

你的公式实在是太细长了,简直像是“清明上河图”。

其实两种方式都可以正常显示。只是论坛有个对大图片会自动缩小的功能。
你只要用鼠标点击它然后缩放,并左右拖动即可显示各局部部分。

wayne 发表于 2009-9-6 12:09:50

282842712474 发表于 2009-9-6 13:42:31

我也找到了,放在这里:
http://spaces.ac.cn/article.asp?id=114

本来用maxima求,但是软件报告说太长了,求不了;后来就到WA搜索了一下,发现那里的latex和我们的有很多区别;最后无奈之下求助了wiki。

不知道楼上的如何求出来的?

wayne 发表于 2009-9-10 11:39:11

5# 282842712474

wayne 发表于 2009-9-10 11:43:52

本帖最后由 wayne 于 2009-9-10 11:45 编辑

好像copy不了公式的TeX代码,:L

Frankenstein 发表于 2009-9-25 18:17:52

对,我今天也注意到了这个问题。是的确不能拷贝吗?我copy的时候是在源文件里边拷贝的,但是好多啊,找到那一段都要些时间。
页: [1]
查看完整版本: 测试超长公式