解方程
实数范围内解方程 $x^3+1=2\root3(2x-1)$显然$x_{1}=1$ $-16 x + 3 x^3 + 3 x^6 + x^9 + 9=(-1+x) (-1+x+x^2) (9+2 x+4 x^2+2 x^3+2 x^4+x^6)=0$
而$9+2 x+4 x^2+2 x^3+2 x^4+x^6>0$恒成立、 wayne 发表于 2021-1-26 22:56
$-16 x + 3 x^3 + 3 x^6 + x^9 + 9=(-1+x) (-1+x+x^2) (9+2 x+4 x^2+2 x^3+2 x^4+x^6)=0$
而$9+2 x+4 x^2 ...
只能硬算?有没有简单巧妙的方法? 灵感乍现,我怎么感觉这题目我做过。
$x^3+1=2y, y^3+1=2x$, 而$y=1/2(x^3-1)$是单调递增函数, 因为轮换对称,所以该函数关于$y=x$对称,反函数等于函数本身,所以 $x^3+1=2x$,也就是$(-1+x) (-1+x+x^2)=0$ (*解方程https://bbs.emath.ac.cn/thread-17672-1-1.html*)
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
ans=Solve[(x^3+1)^3==8*(2*x-1),{x}];
Grid
Grid
\[\begin{array}{l}
x\to 1 \\
x\to \frac{1}{2} \left(-\sqrt{5}-1\right) \\
x\to \frac{1}{2} \left(\sqrt{5}-1\right) \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,1\right] \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,2\right] \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,3\right] \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,4\right] \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,5\right] \\
x\to \text{Root}\left[\text{$\#$1}^6+2 \text{$\#$1}^4+2 \text{$\#$1}^3+4 \text{$\#$1}^2+2 \text{$\#$1}+9\&,6\right] \\
\end{array}\]
数值化
\[\begin{array}{l}
x\to 1. \\
x\to -1.61803 \\
x\to 0.618034 \\
x\to -1.08891-0.824866 i \\
x\to -1.08891+0.824866 i \\
x\to 0.123133\, -1.4302 i \\
x\to 0.123133\, +1.4302 i \\
x\to 0.965776\, -1.18647 i \\
x\to 0.965776\, +1.18647 i \\
\end{array}\] 老问题:
https://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=15290&fromuid=865
页:
[1]