northwolves 发表于 2021-1-26 22:55:25

解方程(二)

$cos^7x+1/(cos^3x)=sin^7x+1/(sin^3x)$

lsr314 发表于 2021-1-26 23:29:35

本帖最后由 lsr314 于 2021-1-26 23:31 编辑

显然$x=pi/4+k pi$是其解,从图像上看这是全部实数解。

wayne 发表于 2021-1-26 23:50:35

根据$f(t)=t^7+1/t^3$的奇偶性,容易看出周期性是$\pi$,且咱们只需要考虑$$区间,又考虑到方程是关于$sin(x)$与$cos(x)$对称的,即关于$x=\frac{\pi}{4}$对称。咱们只需要考虑$$,而$f(t)=t^7+1/t^3$在$0<t<\frac{\sqrt{2}}{2}$是单调递减的,所以只可能$sin(x)=cos(x)$,于是答案就是$x=\frac{\pi}{4}+k\pi$

mathematica 发表于 2021-1-27 08:22:50

(*https://bbs.emath.ac.cn/thread-17673-1-1.html解方程(二)*)
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
ans=NSolve[{x^7+1/x^3==y^7+1/y^3,x^2+y^2==1},{x,y}];
Grid

唯一正确的标准答案来了!人家又没说是实数范围内!
\[\begin{array}{ll}
x\to 1.17636\, -0.940122 i & y\to -1.17636-0.940122 i \\
x\to 1.17636\, +0.940122 i & y\to -1.17636+0.940122 i \\
x\to -1.17636-0.940122 i & y\to 1.17636\, -0.940122 i \\
x\to -1.17636+0.940122 i & y\to 1.17636\, +0.940122 i \\
x\to 1.06913\, +0.3456 i & y\to 0.598232\, -0.617638 i \\
x\to 1.06913\, -0.3456 i & y\to 0.598232\, +0.617638 i \\
x\to -1.06913+0.3456 i & y\to -0.598232-0.617638 i \\
x\to -1.06913-0.3456 i & y\to -0.598232+0.617638 i \\
x\to 0.598232\, -0.617638 i & y\to 1.06913\, +0.3456 i \\
x\to 0.598232\, +0.617638 i & y\to 1.06913\, -0.3456 i \\
x\to -0.598232-0.617638 i & y\to -1.06913+0.3456 i \\
x\to -0.598232+0.617638 i & y\to -1.06913-0.3456 i \\
x\to -0.707107 & y\to -0.707107 \\
x\to 0.707107 & y\to 0.707107 \\
x\to -1.16688-0.119569 i & y\to 0.221599\, -0.629617 i \\
x\to -1.16688+0.119569 i & y\to 0.221599\, +0.629617 i \\
x\to 1.16688\, -0.119569 i & y\to -0.221599-0.629617 i \\
x\to 1.16688\, +0.119569 i & y\to -0.221599+0.629617 i \\
x\to 0.221599\, -0.629617 i & y\to -1.16688-0.119569 i \\
x\to 0.221599\, +0.629617 i & y\to -1.16688+0.119569 i \\
x\to -0.221599-0.629617 i & y\to 1.16688\, -0.119569 i \\
x\to -0.221599+0.629617 i & y\to 1.16688\, +0.119569 i \\
x\to 0.797089\, -0.367901 i & y\to -0.797089-0.367901 i \\
x\to 0.797089\, +0.367901 i & y\to -0.797089+0.367901 i \\
x\to -0.797089-0.367901 i & y\to 0.797089\, -0.367901 i \\
x\to -0.797089+0.367901 i & y\to 0.797089\, +0.367901 i \\
\end{array}\]

mathematica 发表于 2021-1-27 08:29:16

老问题
https://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=15290&fromuid=865
页: [1]
查看完整版本: 解方程(二)