寻找三角形内的一点
$\triangle ABC$ 已知,求点 $D$ 的位置本帖最后由 lsr314 于 2021-3-2 19:45 编辑
椭圆的离心率只有一个变量,D应该有无穷多个选择(不一定) 可令
\[\mathop {DF}\limits^ \to = \frac{{\left( {s + t} \right)\left( {1 - st} \right)}}{{s{{\left( {1 + it} \right)}^2}}}\mathop {DA}\limits^ \to\]
\[\mathop {DF}\limits^ \to = \frac{{\left( {s - u} \right)\left( {1 + su} \right)}}{{s{{\left( {1 - iu} \right)}^2}}}\mathop {DC}\limits^ \to\]
\[\mathop {DG}\limits^ \to = \frac{{\left( {p + q} \right)\left( {1 - pq} \right)}}{{p{{\left( {1 - iq} \right)}^2}}}\mathop {DA}\limits^ \to\]
\[\mathop {DG}\limits^ \to = \frac{{\left( {p - u} \right)\left( {1 + pu} \right)}}{{p{{\left( {1 + iu} \right)}^2}}}\mathop {DB}\limits^ \to\]
\[\mathop {DE}\limits^ \to = \frac{{\left( {v + t} \right)\left( {1 - vt} \right)}}{{v{{\left( {1 - it} \right)}^2}}}\mathop {DB}\limits^ \to\]
\[\mathop {DE}\limits^ \to = \frac{{\left( {v - q} \right)\left( {1 + qv} \right)}}{{v{{\left( {1 + iq} \right)}^2}}}\mathop {DC}\limits^ \to\]
其中:\
\[\frac{{\left( {s + t} \right)\left( {1 - st} \right)}}{{s{{\left( {1 + it} \right)}^2}}}\frac{{\left( {p - u} \right)\left( {1 + pu} \right)}}{{p{{\left( {1 + iu} \right)}^2}}}\frac{{\left( {v - q} \right)\left( {1 + qv} \right)}}{{v{{\left( {1 + iq} \right)}^2}}} = \frac{{\left( {s - u} \right)\left( {1 + su} \right)}}{{s{{\left( {1 - iu} \right)}^2}}}\frac{{\left( {p + q} \right)\left( {1 - pq} \right)}}{{p{{\left( {1 - iq} \right)}^2}}}\frac{{\left( {v + t} \right)\left( {1 - vt} \right)}}{{v{{\left( {1 - it} \right)}^2}}}\]
后一式又可化为
\
各小三角形内心分别为:
\[\mathop {DM}\limits^ \to = \frac{{1 - st}}{{1 + it}}\mathop {DA}\limits^ \to\]
\[\mathop {DL}\limits^ \to = \frac{{s - u}}{{s\left( {1 - iu} \right)}}\mathop {DC}\limits^ \to\]
\[\mathop {DH}\limits^ \to = \frac{{1 - pq}}{{1 - iq}}\mathop {DA}\limits^ \to\]
\[\mathop {DI}\limits^ \to = \frac{{p - u}}{{p\left( {1 + iu} \right)}}\mathop {DB}\limits^ \to\]
\[\mathop {DJ}\limits^ \to = \frac{{1 - vt}}{{1 - it}}\mathop {DB}\limits^ \to\]
\[\mathop {DK}\limits^ \to = \frac{{v - q}}{{v\left( {1 + iq} \right)}}\mathop {DC}\limits^ \to\]
由前述关系式可得:
\[\mathop {DH}\limits^ \to = \frac{{p - t - u - ptu}}{{\left( {1 - st} \right)\left( {i - u} \right)}}\mathop {DM}\limits^ \to\]
\[\mathop {DI}\limits^ \to = \frac{{\left( {1 + pt + pu - tu} \right)\left( { - p + t + u + ptu} \right)}}{{p\left( {i - t} \right)\left( {1 - st} \right)\left( {i - u} \right)\left( {1 + pu} \right)}}\mathop {DM}\limits^ \to\]
\[\mathop {DJ}\limits^ \to = \frac{{\left( {1 + pt + pu - tu} \right)\left( { - p + t + u + ptu} \right)\left( {1 - tv} \right)}}{{\left( {1 + {t^2}} \right)\left( {1 - st} \right)\left( {p - u} \right)\left( {1 + pu} \right)}}\mathop {DM}\limits^ \to\]
\[\mathop {DL}\limits^ \to = \frac{{\left( {s + t} \right)\left( {i + u} \right)}}{{s\left( {i - t} \right)\left( {1 + su} \right)}}\mathop {DM}\limits^ \to\]
\[\mathop {DK}\limits^ \to = \frac{{\left( {s + t} \right)\left( {i + u} \right)\left( {1 - tu - tv - uv} \right)}}{{\left( {1 + {t^2}} \right)\left( {s - u} \right)\left( {1 + su} \right)v}}\mathop {DM}\limits^ \to\]
这样我们只需根据这几个式子,在条件$T=0$下,证明六内心构成的六边形确实外切于某椭圆曲线即可。
这可归为一般性问题:给定六边形,已知其外切于椭圆,求椭圆的表示。
目前暂时没想到好办法,暂时先解决圆的情形:
若椭圆退化为圆,设圆的中心为$O$,
\[\mathop {DO}\limits^ \to = \left( {\lambda+ i\mu } \right)\mathop {DM}\limits^ \to\]
(以下计算开始繁琐了,待有时间再仔细计算)
我们可根据marden定理导出三角形内心所满足的方程,见 https://bbs.emath.ac.cn/thread-17622-1-1.html
由$IH,LM,JK$的延长线交点构成的三角形,与由$IJ,KL,HM$的延长线交点构成的三角形,其内心是相同的,这样可得到两个等式:
$ eq1(s,t,p,u,v) = 0 $
$ eq2(s,t,p,u,v) = 0 $
这两个方程与前面的$T=0$联立。
另一方面,我们也可以根据
\[\frac{{\left( {s + t} \right)\left( {1 - st} \right)}}{{s{{\left( {1 + it} \right)}^2}}}\mathop {DA}\limits^ \to = \frac{{\left( {s - u} \right)\left( {1 + su} \right)}}{{s{{\left( {1 - iu} \right)}^2}}}\mathop {DC}\limits^ \to\]
\[\frac{{\left( {p - u} \right)\left( {1 + pu} \right)}}{{p{{\left( {1 + iu} \right)}^2}}}\mathop {DB}\limits^ \to = \frac{{\left( {p + q} \right)\left( {1 - pq} \right)}}{{p{{\left( {1 - iq} \right)}^2}}}\mathop {DA}\limits^ \to\]
反解$A,D$为关于$B,C$的表示式,再改写成重心坐标形式即可。 lsr314 发表于 2021-3-2 18:59
椭圆的离心率只有一个变量,D应该有无穷多个选择(不一定)
明显HK、IL、JM三线相交于D,由布利安桑逆定理知六边形HIJKLM共切于一条二次曲线。
假定D的坐标为 (u,v), 由它确定的椭圆方程为\椭圆特化为圆的条件为 \两个坐标两个约束方程,故解存在并有限。 D 应该是确定的,至少应该是有限个,可能得到的会是一个很高次的方程 内切换成外接,命题也成立。 前面已得到了六边形的表示,现在来求六边形内切椭圆的表示。
已知凸六边形$HIJKLM$,三条对角线共点。
设
\[\left( {H,I,J,K,L,M} \right) = {x_k} + i{y_k},\left( {k = 1,...6} \right)\]
可求得延长线交点X,Y,Z
\
\
\
三角形$XYZ$的内切椭圆上的点$T$可表示为:
\
其中$u$为自变量。
分别由$IJ,KL,MH$与椭圆相切,即交点唯一可得三个等式,由此可得
\
\
并有
\[ \left(x_2 x_5 y_1 y_3-x_4 x_5 y_1 y_3-x_2 x_6 y_1 y_3+x_4 x_6 y_1 y_3-x_1 x_5 y_2 y_3+x_4 x_5 y_2 y_3+x_1 x_6 y_2 y_3-x_4 x_6 y_2 y_3+x_1 x_4 y_5 y_3-x_2 x_4 y_5 y_3-x_1 x_6 y_5 y_3+x_2 x_6 y_5 y_3-x_1 x_4 y_6 y_3+x_2 x_4 y_6 y_3+x_1 x_5 y_6 y_3-x_2 x_5 y_6 y_3-x_2 x_5 y_1 y_4+x_3 x_5 y_1 y_4+x_2 x_6 y_1 y_4-x_3 x_6 y_1 y_4+x_1 x_5 y_2 y_4-x_3 x_5 y_2 y_4-x_1 x_6 y_2 y_4+x_3 x_6 y_2 y_4-x_2 x_3 y_1 y_5+x_2 x_4 y_1 y_5+x_3 x_6 y_1 y_5-x_4 x_6 y_1 y_5+x_1 x_3 y_2 y_5-x_1 x_4 y_2 y_5-x_3 x_6 y_2 y_5+x_4 x_6 y_2 y_5-x_1 x_3 y_4 y_5+x_2 x_3 y_4 y_5+x_1 x_6 y_4 y_5-x_2 x_6 y_4 y_5+x_2 x_3 y_1 y_6-x_2 x_4 y_1 y_6-x_3 x_5 y_1 y_6+x_4 x_5 y_1 y_6-x_1 x_3 y_2 y_6+x_1 x_4 y_2 y_6+x_3 x_5 y_2 y_6-x_4 x_5 y_2 y_6+x_1 x_3 y_4 y_6-x_2 x_3 y_4 y_6-x_1 x_5 y_4 y_6+x_2 x_5 y_4 y_6\right) \left(x_3 x_4 y_1 y_2-x_3 x_5 y_1 y_2-x_4 x_6 y_1 y_2+x_5 x_6 y_1 y_2+x_1 x_5 y_3 y_2-x_4 x_5 y_3 y_2-x_1 x_6 y_3 y_2+x_4 x_6 y_3 y_2-x_1 x_3 y_4 y_2+x_3 x_5 y_4 y_2+x_1 x_6 y_4 y_2-x_5 x_6 y_4 y_2+x_1 x_3 y_6 y_2-x_3 x_4 y_6 y_2-x_1 x_5 y_6 y_2+x_4 x_5 y_6 y_2-x_2 x_4 y_1 y_3+x_4 x_5 y_1 y_3+x_2 x_6 y_1 y_3-x_5 x_6 y_1 y_3+x_1 x_2 y_3 y_4-x_1 x_5 y_3 y_4-x_2 x_6 y_3 y_4+x_5 x_6 y_3 y_4+x_2 x_3 y_1 y_5-x_3 x_4 y_1 y_5-x_2 x_6 y_1 y_5+x_4 x_6 y_1 y_5-x_1 x_2 y_3 y_5+x_2 x_4 y_3 y_5+x_1 x_6 y_3 y_5-x_4 x_6 y_3 y_5+x_1 x_3 y_4 y_5-x_2 x_3 y_4 y_5-x_1 x_6 y_4 y_5+x_2 x_6 y_4 y_5-x_2 x_3 y_1 y_6+x_2 x_4 y_1 y_6+x_3 x_5 y_1 y_6-x_4 x_5 y_1 y_6-x_1 x_2 y_4 y_6+x_2 x_3 y_4 y_6+x_1 x_5 y_4 y_6-x_3 x_5 y_4 y_6+x_1 x_2 y_5 y_6-x_1 x_3 y_5 y_6-x_2 x_4 y_5 y_6+x_3 x_4 y_5 y_6\right) = 0 \]
这两个因式的其中一个即为三对角线共点的条件:
\[ x_3 x_4 y_1 y_2-x_3 x_5 y_1 y_2-x_4 x_6 y_1 y_2+x_5 x_6 y_1 y_2+x_1 x_5 y_3 y_2-x_4 x_5 y_3 y_2-x_1 x_6 y_3 y_2+x_4 x_6 y_3 y_2-x_1 x_3 y_4 y_2+x_3 x_5 y_4 y_2+x_1 x_6 y_4 y_2-x_5 x_6 y_4 y_2+x_1 x_3 y_6 y_2-x_3 x_4 y_6 y_2-x_1 x_5 y_6 y_2+x_4 x_5 y_6 y_2-x_2 x_4 y_1 y_3+x_4 x_5 y_1 y_3+x_2 x_6 y_1 y_3-x_5 x_6 y_1 y_3+x_1 x_2 y_3 y_4-x_1 x_5 y_3 y_4-x_2 x_6 y_3 y_4+x_5 x_6 y_3 y_4+x_2 x_3 y_1 y_5-x_3 x_4 y_1 y_5-x_2 x_6 y_1 y_5+x_4 x_6 y_1 y_5-x_1 x_2 y_3 y_5+x_2 x_4 y_3 y_5+x_1 x_6 y_3 y_5-x_4 x_6 y_3 y_5+x_1 x_3 y_4 y_5-x_2 x_3 y_4 y_5-x_1 x_6 y_4 y_5+x_2 x_6 y_4 y_5-x_2 x_3 y_1 y_6+x_2 x_4 y_1 y_6+x_3 x_5 y_1 y_6-x_4 x_5 y_1 y_6-x_1 x_2 y_4 y_6+x_2 x_3 y_4 y_6+x_1 x_5 y_4 y_6-x_3 x_5 y_4 y_6+x_1 x_2 y_5 y_6-x_1 x_3 y_5 y_6-x_2 x_4 y_5 y_6+x_3 x_4 y_5 y_6 = 0 \]
另一个因式也许属于双曲线的情形,暂不做讨论。
可以将$T$的参数表示转为直角坐标方程而求得椭圆成为圆的条件,
但这里有更简便的求法,根据marden定理,椭圆的焦点满足方程:
\
若两焦点重合,则椭圆成为圆,即有方程判别式为$0$, 分离出虚部和实部得到两个条件。 直接令六条边的中垂线交于一点,可以考虑用复数表示
页:
[1]