1678911a 发表于 2021-3-17 23:58:18

整数分成素数乘积

整数分成素数乘积
45412030379041940005670330105206673889709229142445156563893182723262407139

1678911a 发表于 2021-3-18 00:00:45

数学软件运行好长时间没有找到结果

.·.·. 发表于 2021-3-18 00:28:27

你是不知道百度吗?
还是……你用的软件太垃圾了?
45412030379041940005670330105206673889709229142445156563893182723262407139=754546789847807371403*60184512067437963784911974438141494721236910171586313
我分解耗时甚至不如安装软件耗时多

Reading GPRC: /etc/gprc
GPRC Done.

                                                   GP/PARI CALCULATOR Version 2.13.1 (released)
                                             amd64 running linux (x86-64/GMP-6.2.1 kernel) 64-bit version
                                                   compiled: Jan 25 2021, gcc version 10.2.0 (GCC)
                                                            threading engine: pthread
                                                    (readline v8.1 enabled, extended help enabled)

                                                      Copyright (C) 2000-2020 The PARI Group

PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type ?17 for how to get moral (and possibly technical) support.

parisizemax = 34359738368, primelimit = 67108864, nbthreads = 12
00:27:40> factor(45412030379041940005670330105206673889709229142445156563893182723262407139)
cpu time = 8,203 ms, real time = 8,213 ms.
%1 =
[                              754546789847807371403 1]


1678911a 发表于 2021-3-18 07:32:12

本帖最后由 1678911a 于 2021-3-18 07:34 编辑

...2021-3-18 00:28


45412030379041940005670330105206673889709229142445 ...
有没有好的数学软件提供一下?

wayne 发表于 2021-3-18 08:11:12

1678911a 发表于 2021-3-18 07:32
有没有好的数学软件提供一下?

额,楼上的已经给出了软件的名字,看是看了,却看不见

mathematica 发表于 2021-3-19 08:43:26

GMP-ECM 7.0.5-dev
Input number is 45412030379041940005670330105206673889709229142445156563893182723262407139 (74 digits)
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:966578906
Step 1 took 140ms
Step 2 took 125ms
Run 2 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:647251551
Step 1 took 156ms
Step 2 took 125ms
Run 3 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:3878206857
Step 1 took 140ms
Step 2 took 125ms
Run 4 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:3570936347
Step 1 took 156ms
Step 2 took 125ms
Run 5 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:3344596259
Step 1 took 140ms
Step 2 took 125ms
Run 6 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:2516142975
Step 1 took 156ms
Step 2 took 125ms
Run 7 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:2518827497
Step 1 took 140ms
Step 2 took 109ms
Run 8 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:313143066
Step 1 took 141ms
Step 2 took 140ms
Run 9 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:2293500960
Step 1 took 140ms
Step 2 took 125ms
Run 10 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:4035596939
Step 1 took 141ms
Step 2 took 124ms
Run 11 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:1458866845
Step 1 took 141ms
Step 2 took 125ms
Run 12 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:2454416340
Step 1 took 140ms
Step 2 took 125ms
Run 13 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:1961297876
Step 1 took 140ms
Step 2 took 125ms
Run 14 out of 1000:
Using B1=300000, B2=100000000, polynomial Dickson(3), sigma=1:2902466861
Step 1 took 140ms
********** Factor found in step 1: 754546789847807371403
Found prime factor of 21 digits: 754546789847807371403
Prime cofactor 60184512067437963784911974438141494721236910171586313 has 53 digits


我的代码如下:
cd C:\Users\Administrator\Desktop\_123\gmpecm-svn3027-sandybridge
ecm -one -c 1000 3e5 1e8 < composites | findstr "." >>output

灵树 发表于 2021-3-19 16:58:41

大家来说说大数计算的需求,你都希望实现大数计算的什么功能。比如加、减、乘、除、分解、输入、输出,整数、浮点、精度等。

1678911a 发表于 2021-3-19 17:59:53

有没有计算:1万位左右整数分解质因数?

.·.·. 发表于 2021-3-19 19:36:51

1678911a 发表于 2021-3-19 17:59
有没有计算:1万位左右整数分解质因数?

如果有
举世震惊是免不了的。

1678911a 发表于 2021-3-20 07:39:08

有些数学网站,可以判断500-1000万位素数
页: [1] 2
查看完整版本: 整数分成素数乘积