Tan[x]的n阶导问题
Tan的n阶导很明显是Tan的多项式,它的系数有什么好的总结呢? $y=tan(x)$,$y'=1+y^2$,$y''=2yy'$,显然n阶导数 存在公因子$y'$,不妨 设n阶导数$y^{(n)}= F_n(y)*y' = F_{n}(y)*(1+y^2)$, 其中$F_1(y)=1,F_2(y)=2y$ , 于是 $F_{n+1}(y) $ 就是 $F_{n}(y)*(1+y^2)$对$y$求导.如果设$F_n(y)=\sum _{k=0}^{n-1} a(n,k)y^k$,那么 可以得到 递推公式$a(n+1,k) = (k+1)(a(n,k+1)+a(n,k-1))$ ,然后对于特殊条件,
$a(n,n-1) = n! $
$a(n,n-3) = \frac{n! (n-2) }{3} $
$a(n,n-2k) = 0 $
$ a(n,k)=0, k>=n| k<0$
$a(2n,0) =0$
$a(2n+1,0) =\frac{2^{2 n} (2^{2 n}-1) | B_{2 n}| }{2 n}$ , https://oeis.org/A000182
Expand[(1 + y^2) NestList &, 1, 10]]
1+y^2
2 y+2 y^3
2+8 y^2+6 y^4
16 y+40 y^3+24 y^5
16+136 y^2+240 y^4+120 y^6
272 y+1232 y^3+1680 y^5+720 y^7
272+3968 y^2+12096 y^4+13440 y^6+5040 y^8
7936 y+56320 y^3+129024 y^5+120960 y^7+40320 y^9
7936+176896 y^2+814080 y^4+1491840 y^6+1209600 y^8+362880 y^10
353792 y+3610112 y^3+12207360 y^5+18627840 y^7+13305600 y^9+3628800 y^11
353792+11184128 y^2+71867136 y^4+191431680 y^6+250145280 y^8+159667200 y^10+39916800 y^12 wayne 发表于 2021-7-27 20:12
$y=tan(x)$,$y'=1+y^2$,$y''=2yy'$,显然n阶导数 存在公因子$y'$,不妨 设n阶导数$y^{(n)}= F_n(y)*y' = F_{n ...
感谢...!
页:
[1]