有通项公式吗?
\(1,\ 2,\frac{1}{2},\ 3,\frac{1}{3},\frac{2}{3},\ 4,\frac{1}{4},\frac{2}{4},\frac{3}{4},\ 5,\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},\ 6,\frac{1}{6},\frac{2}{6},\frac{3}{6},\frac{4}{6},\frac{5}{6},\ 7,\frac{1}{7},......\) 整数项:$a_{n}=\floor(\sqrt(2n)+\frac{1}{2})$分数项:$a_{n}=\frac{n-1-\frac{\floor(\sqrt(2n)+\frac{1}{2})\floor(\sqrt(2n)+\frac{3}{2}}}{2}}{\floor(\sqrt(2n)+\frac{1}{2})}$ 本帖最后由 王守恩 于 2022-1-27 11:54 编辑
northwolves 发表于 2022-1-24 17:51
整数项:$a_{n}=\floor(\sqrt(2n)+\frac{1}{2})$
分数项:$a_{n}=\frac{n-1-\frac{\floor(\sqrt(2n)+\fr ...
\(\D a_{n}=\frac{n-1}{\big[\sqrt{2n\ }\ \big]\ }+\frac{\big[\sqrt{2n\ }\ \big]\big(2\big[\sqrt{2n-1\ \ }\ \big]-2\big[\sqrt{2n-2\ \ }\ \big]-1\big)+1\ \ \ \ \ \ }{2}\ \ \ \ \ \ \ \ \big[\ \ \big]\)表示四舍五入。 本帖最后由 王守恩 于 2022-1-28 17:21 编辑
王守恩 发表于 2022-1-27 11:32
\(\D a_{n}=\frac{n-1}{\big[\sqrt{2n\ }\ \big]\ }+\frac{\big[\sqrt{2n\ }\ \big]\big(2\big[\sqrt{2n- ...
再来一道。
1,1,1,1,2,2,1,1,1,1,2,1,2,3,3,2,1,2,1,1,1,1,2,1,2,3,1,2,3,4,4,3,2,1,3,2,1,2,1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,5,4,3,2,1,4,3,2,1,3,2,1,2,1,1,....
1,1,
1,1,2,2,1,1,
1,1,2,1,2,3,3,2,1,2,1,1,
1,1,2,1,2,3,1,2,3,4,4,3,2,1,3,2,1,2,1,1,
1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,5,4,3,2,1,4,3,2,1,3,2,1,2,1,1,
.... 王守恩 发表于 2022-1-28 15:25
再来一道。
1,1,1,1,2,2,1,1,1,1,2,1,2,3,3,2,1,2,1,1,1,1,2,1,2,3,1,2,3,4,4,3,2,1,3,2,1,2,1,1, ...
什么规律? 有通项公式吗?
{1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010,
1111111111111111111111,121212121212121212121212, 13131313131313131313131313, .....}
王守恩 发表于 2022-3-20 06:57
有通项公式吗?
{1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010 ...
$a_{n}=\frac{n*(10^{n*(1+\left[ lgn \right])}-1)}{10^{1+\left}-1}$ northwolves 发表于 2022-3-20 10:01
$a_{n}=\frac{n*(10^{n*(1+\left[ lgn \right])}-1)}{10^{1+\left}-1}$
\(a_{n}=\frac{n\cdot(10^{n\cdot(\lfloor\lg(n)\rfloor+1)}-1)}{10^{\lfloor\lg(n)\rfloor+1}-1}\)
\(a_{n}=\frac{n\cdot(10^{n\cdot\lceil\lg(n+1)\rceil}-1)}{10^{\lceil\lg(n+1)\rceil}-1}\) northwolves 发表于 2022-3-20 10:01
$a_{n}=\frac{n*(10^{n*(1+\left[ lgn \right])}-1)}{10^{1+\left}-1}$
7人排成一列1234567,重排后前面不是上一次的人,有2119种情形。
{1, 1, 3, 11, 53, 309, 2119, 16687, 148329, 1468457, 16019531, 190899411,
\(a(n)=[\frac{(n + 1)!}{n*e}]\ \ \ \ [\ \ ]\)表示四舍五入
往前走一走:7人排成一列1234567,重排后前后都不是上一次的人,有多少种情形?
王守恩 发表于 2022-3-21 08:59
7人排成一列1234567,重排后前面不是上一次的人,有2119种情形。
{1, 1, 3, 11, 53, 309, 2119, 16687,...
6人排成一列123456,重排后,前后都不是上一次的人,有100种情形。
01,135246
02,135264
03,136425
04,142536
05,142635
06,146253
07,146352
08,152436
09,152634
10,153624
11,153642
12,162435
13,162534
14,163524
15,164253
16,241536
17,241635
18,246135
19,246153
20,246315
21,246351
22,251364
23,251463
24,253146
25,253164
26,253614
27,253641
28,261435
29,261534
30,263514
31,264135
32,264153
33,314625
34,315246
35,315264
36,316425
37,351426
38,351462
39,351624
40,351642
41,352416
42,352461
43,352614
44,352641
45,361425
46,361524
47,362415
48,362514
49,364152
50,364251
页:
[1]
2