wsc810 发表于 2022-2-17 20:11:32

pell方程迭代中值中的一个二次方程化简问题

本帖最后由 wsc810 于 2022-2-17 20:21 编辑

设素数d=4k+1, $d=P^2+Q^2$

$p_{n-1}^2-dq_{n-1}^2=(-1)^nQ_n$            (1)

$p_n^2-dq_n^2=(-1)^{n+1}Q_{n+1}$            (2)

在迭代中点,有$Q_n=Q_{n+1}=Q$

$p_{n-1}^2-(P^2+Q^2)q_{n-1}^2=(-1)^nQ$


将上述不定方程看作关于 Q 的二次方程,移项、整理得


$Q^2q_{n-1}^2+(-1)^nQ-(p_{n-1}^2-Pq_{n-1}^2)=0$


$(2Qq_{n-1}^2+(-1)^n)^2=1+4q_{n-1}^2(p_{n-1}^2-Pq_{n-1}^2)$,这个恒等式右边可以化简为其它形式吗

同理对第二个方程,有


$(2Qq_{n}^2+(-1)^{n+1})^2=1+4q_n^2(p_n^2-Pq_n^2)$















wsc810 发表于 2022-2-18 09:18:07

其它几个有用的公式

假设$x^2-dy^2=-1$,在迭代中点、则有

$p_n^2+p_{n-1}^2=dy$

$q_n^2+q_{n-1}^2=y$


$p_nq_n+p_{n-1}q_{n-1}=x$

$p_nq_n-p_{n-1}q_{n-1}=Py$


$p_nq_{n-1}+p_{n-1}q_n=Qy$

$p_np_{n-1}+dq_nq_{n-1}=Qx$


$p_n^2+dq_n^2=Px+dy$

$p_{n-1}^2+dq_{n-1}^2=dy-Px$





页: [1]
查看完整版本: pell方程迭代中值中的一个二次方程化简问题