mathe 发表于 2022-12-11 11:56:16

14棵树竟然找到了73个4点圆的解。
上面两个文件分别给出了找到解的Singular方程和对应的解
https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/KLM.sp
https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/KLM.sp.out
可以选择数值解
o=0.5
n=-1.6861406616345071649626528670547323296
m=-0.29653516540862679124066321676368308234
l=0.86435677693908452749377547784245538831
k=1.2287135538781690549875509556849107764
d=0.5
c=0.64374902690149023148913877697772455964
b=-2.4949510095897986824206185955346039501
a=-0.34307033081725358248132643352736616489
于是解得变换矩阵S为:
[-1.0000000000000000000000000000000000000 -2.2099614503524460949819920571989120659                                        0]
[                                  0                                      -2.1591804046738792146822678868156951273                                        0]

于是变换后13个点坐标为:
1: A = (-1.2208577248401677090604559983157963834, -3.1468480523080114886881271169977579250)
2: B = (-1.9478233124221029597568335446233091471, -1.9030657422906829627855358303024612249)
3: C = (-2.7527647907411112446780188831961624579, -3.5363463784316339145936381145450808675)
4: D = (-0.82783248947524419914841475107311902588, -0.80881034795529151745796572847987162035)
5: E = (0.73831734921240420520581932243142318234, 1.9030657422906829627855358303024612258)
6: F = (1,0)
7: G = (-1.8691742383633934665857228826763170467, 0)
8: H = (-1.5323609202837326010799277620171050618, -1.6348501262607572224466639246140796226)
9: I = (-1.9854399388298223415753940842379802469, -2.8132724283050665407238088353110992720)
10: J = (-2.2258288971159533487712352984471172569, -1.4274195298222514843054347812245927651)
11: K = (1.3430703308172535824813264335273661652, -2.4949510095897986824206185955346039503)
12: L = (-0.52723171215234560757205083333012202590, 0.97941058062225676502940186295657279032)
13: M = (0,0)
14: N = infinty
在加上无穷远点共14个点,对应的73个4点圆(或过无穷远点的直线)在文件KLM.sp.out中可以找到,四点圆用[]包含,三点线用{}包含
对应图片

Geogebra文件
对应点圆关系:
ABEGABHIABJNABKMACDGACEFACHJACKNACLMADHKADIJADLNAEHLAEIKAEMNAFHMAFILAFJKAGHNAGIMAGJLBCDFBCHKBCIJBCLNBDHLBDIKBDMNBEHMBEILBEJKBFHNBFIMBFJLBGINBGJMBGKLCDHMCDILCDJKCEHNCEIMCEJLCFINCFJMCFKLCGHICGJNCGKMDEFGDEINDEJMDEKLDFHIDFJNDFKMDGHJDGKNDGLMEFHJEFKNEFLMEGHKEGIJEGLNFGHLFGIKFGMNHILNHJKNHJLMIJKMKLMN
其中点B和I有20个圆经过,其它点21个圆经过。所以从中去掉I点,可以得到一个13点53圆的结构。


mathe 发表于 2022-12-11 15:22:01


变换以后更加好看清晰的图,参数o=-0.6,d=0.7。
黑色圆是常规的圆,红色的是额外的圆,规律非常明显

mathe 发表于 2022-12-12 08:09:12

类似构造,可以16棵树有120个四点圆
https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/c16.html

其中每个点30个圆经过,所以15棵树可以有90个四点圆

mathe 发表于 2022-12-12 10:47:20

n=18应该可以达到172个四点圆。除了和两个共心正九边形能够形成四点圆同样模式的144个圆,还可以额外有28个圆。
其中前9个点内部构成的额外14个圆如下(后9个点同样模式)














除了1,4号点增加7个圆,其它点都增加6个圆。所以1,4,10,13号点都有32+7=39个圆经过,其余点32+6=38个圆经过。而n=17可以得到172-38=134个圆。
但是这个解对应的方程比较复杂,数值解有些麻烦,等有空再弄。

wayne 发表于 2022-12-12 10:59:10

方程组可以导出来不。我用Mathematica解一下

mathe 发表于 2022-12-12 11:48:42

方程组已经挺容易计算了,有两个额外自由度,但是是6次方程,应该需要选择合适参数才能有实数解。求一组解应该不难,我们最好能找出一个较好的参数范围,再这个范围基本有解,就可以做批量动态图了

mathe 发表于 2022-12-12 11:59:40

https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/JMN.out
这个文件的最后部分的方程组比较容易计算,从第一条方程开始一次向后计算即可。
https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/JMN.sp
提供了原始singular代码信息

mathe 发表于 2022-12-12 16:15:07

https://github.com/emathgroup/selectedTopics/blob/master/content/attached/files/c18.html
试着给上面做了一个动态图,但是没有找到特别好看的图。而且不知道为什么红色的圆没法显示了。
给一组高精度的数值解,不知道有没有计算错误
a=0.89158790380942176320595111584988327385374004819812
b=-0.43162113423520053484789849460355651002426359905397
c=0.82224001099409928768439371172702027534800444242813
d=0.5
k=0.39761235575710517615283534497497150738812732405686
l=-3.8680701246388037010813377161184645727455114365352
m=-1.4904506419968069065467445424529311255378804871008
n=0.17419175652090107506220606778517206361254382306631
o=1.6438483692767494887632944887887229253983666498016
p=-0.20575394389296704075449889363016775365413619613663
q=0.79587068339899444493007683842551815928134666489187
r=0.67378592935685396877101158257803270250447616184340
s=1.2618189008915653844376717426763131440196863410532
t=-0.77204425699874323754825307602857935439769550267841
u=0.7
A=(1,0)
B=(0.12183708149916123756334095640929366476533708840523, -0.25049412865903982123114299957668167227517815563231)
C=(0.45762156627518069523578365331343024245561709266552, 0.26256748633397531888727841226031827254697176929306)
D=(0.38913613758430589579332376114607236970949223009736, -0.60232800670564167669155708858072704413239187132955)
E=(0.12265755507670467330416884515735874771309488951715, 0.24024732276934289228583204713053016383816118320953)
F=(0.81259992842971085116704142369901177000826452178395, -0.85983420026427883677806032033234148247988912791365)
G=(-0.0042126424101806988208406824278699628613917505571397, 0.14806093214069674413383950819342061951604122591194)
H=(1.1969987772010505078913357338314267069709200261908, -0.62288799364057522290590714444184465206982492123500)
I=(0,0)
J=(-0.60138023612709554764211979344024958285997210253038, 0)
K=(-0.94430877786977097212888038932454763161288358640213, 1.9414762860943899313434347480982789857991151585260)
L=(-0.98866709844187088478821410495402721436995354857748, -0.56726311430630239715253502842877089855034593724818)
M=(-0.45508939638818446590934242808073940941528316479679, 0.70441437462225545979016954721082368973700051943799)
N=(-1.0137455651722154935913868093705903219735364771345, -1.9856066578990089627095577250685812394496799253871)
O=(-0.34914964407637689573201392128992771967385294750623, 0.36944478393827115410827363207529816511178435676887)
P=(0.11547058341317542468458440765284512199911950981682, -4.0584223749130127211874755592383564498225865687833)
Q=(-0.39534994308665326380182096001423368413559226862358, 0.20573014569905354566091859094619910150578626791989)
R=infinity

mathe 发表于 2022-12-14 13:28:27

前面从10棵树到18棵树(偶数棵)找到的最好结果都可以将2n棵树分成两组,每组n棵树,然后根据两个具有重叠中心正n边形中共圆四点的模式可以产生一批四点圆。而最有结果除了上面这些四点圆,还可以有一些额外四点圆。这些额外四点圆的四个点都在同一组(n棵树内部),而且在两组内分布完全相同。下面我们可以找一些这些额外四点圆的规律

2n=8,e=12 (2n棵树12个四点圆)
ADEHAFGHBDFHCDGHBEGHCEFHABDGABEFACDFACEGBCDEBCFG (每四个字母一个四点圆,比如ADEH, AFGH,...)
./vg ADEHAFGHBDFHCDGHBEGHCEFHABDGABEFACDFACEGBCDEBCFG AFBECDHG (8个点分成两组,依次为AFBE, CDHG(对应到两个正边形形顶点逆时针顺序),不同组之间AC对应,FD对应,BE对应,EG对应)
Check passed
CDGHCEFHABDGABEF 留下额外圆CDGH, CEFH, ABDG, ABEF
EFGHBDEGACFHABCD,如果将两组内部的点按顺序重新编排后结果

2n=10,e=22
AFIJGHIJCDIJBEIJABCJDEGJDFHJCEHJBFGJABDHABEFACDFACGIAEHIAFGHBCDEBCHIBDGIBEGHCDGHCEFGDEFI
./vg AFIJGHIJCDIJBEIJABCJDEGJDFHJCEHJBFGJABDHABEFACDFACGIAEHIAFGHBCDEBCHIBDGIBEGHCDGHCEFGDEFI BCFHIEDAGJ
Check passed
DEGJBCHI
FGIJABDE

CGHJBGIJAHIJAFGJBDHJCEIJDEGJEFHJDFIJABCIABDFABGHACEGACFHADGIAEFIBCDGBCEHBDEIBFHICDEFDFGH
2n=12,e=45
CGHLDEFLCFJLCEKLFHILEGILDGJLDHKLIJKLACILBDILBEJLBFKLAHJLAGKLABCDABEHABFGACEGACFHACJKADEKADFJADGHAEFIAGIJAHIKBCEFBCGJBCHKBDEGBDFHBDJKBEIKBFIJBGHICDEHCDFGCEIJCFIKDGIKDHIJEFGHEGJKFHJK
./vg CGHLDEFLCFJLCEKLFHILEGILDGJLDHKLIJKLACILBDILBEJLBFKLAHJLAGKLABCDABEHABFGACEGACFHACJKADEKADFJADGHAEFIAGIJAHIKBCEFBCGJBCHKBDEGBDFHBDJKBEIKBFIJBGHICDEHCDFGCEIJCFIKDGIKDHIJEFGHEGJKFHJK CJDHIEAKBFLG
Check passed
BFKLAGKLABFGCDEHCEIJDHIJ
HIJKGHKLGIJLACDFABEFBCDE

2n=14,e=73
ABEGABHIABJNABKMACDGACEFACHJACKNACLMADHKADIJADLNAEHLAEIKAEMNAFHMAFILAFJKAGHNAGIMAGJLBCDFBCHKBCIJBCLNBDHLBDIKBDMNBEHMBEILBEJKBFHNBFIMBFJLBGINBGJMBGKLCDHMCDILCDJKCEHNCEIMCEJLCFINCFJMCFKLCGHICGJNCGKMDEFGDEINDEJMDEKLDFHIDFJNDFKMDGHJDGKNDGLMEFHJEFKNEFLMEGHKEGIJEGLNFGHLFGIKFGMNHILNHJKNHJLMIJKMKLMN
./vg ABEGABHIABJNABKMACDGACEFACHJACKNACLMADHKADIJADLNAEHLAEIKAEMNAFHMAFILAFJKAGHNAGIMAGJLBCDFBCHKBCIJBCLNBDHLBDIKBDMNBEHMBEILBEJKBFHNBFIMBFJLBGINBGJMBGKLCDHMCDILCDJKCEHNCEIMCEJLCFINCFJMCFKLCGHICGJNCGKMDEFGDEINDEJMDEKLDFHIDFJNDFKMDGHJDGKNDGLMEFHJEFKNEFLMEGHKEGIJEGLNFGHLFGIKFGMNHILNHJKNHJLMIJKMKLMN ABCDEFGHIJKLMN
Check passed
ABEGACDGACEFBCDFDEFGHILNHJKNHJLMIJKMKLMN

2n=16,e=120
./vg ABCDABGHABIJABKPABLOABMNACFHACIKACLPACMOADEHADFGADILADJKADMPADNOAEIMAEJLAENPAFINAFJMAFKLAFOPAGIOAGJNAGKMAHIPAHJOAHKNAHLMBCEHBCFGBCILBCJKBCMPBCNOBDEGBDIMBDJLBDNPBEINBEJMBEKLBEOPBFIOBFJNBFKMBGIPBGJOBGKNBGLMBHJPBHKOBHLNCDEFCDINCDJMCDKLCDOPCEIOCEJNCEKMCFIPCFJOCFKNCFLMCGJPCGKOCGLNCHIJCHKPCHLOCHMNDEIPDEJODEKNDELMDFJPDFKODFLNDGIJDGKPDGLODGMNDHIKDHLPDHMOEFGHEFIJEFKPEFLOEFMNEGIKEGLPEGMOEHILEHJKEHMPEHNOFGILFGJKFGMPFGNOFHIMFHJLFHNPGHINGHJMGHKLGHOPIJKLIJOPIKNPILMPILNOJKMPJKNOJLMOKLMNMNOP ABCDEFGHIJKLMNOP
Check passed
ABCDABGHACFHADEHADFGBCEHBCFGBDEGCDEFEFGHIJKLIJOPIKNPILMPILNOJKMPJKNOJLMOKLMNMNOP

2n=18, e=172
./vg ABCDABGIABJKABLRABMQABNPACFIACGHACJLACMRACNQACOPADEIADFHADJMADKLADNRADOQAEFGAEJNAEKMAEORAEPQAFJOAFKNAFLMAFPRAGJPAGKOAGLNAGQRAHJQAHKPAHLOAHMNAIJRAIKQAILPAIMOBCEIBCFHBCJMBCKLBCNRBCOQBDEHBDFGBDJNBDKMBDORBDPQBEJOBEKNBELMBEPRBFJPBFKOBFLNBFQRBGJQBGKPBGLOBGMNBHJRBHKQBHLPBHMOBIKRBILQBIMPBINOCDEGCDJOCDKNCDLMCDPRCEJPCEKOCELNCEQRCFJQCFKPCFLOCFMNCGJRCGKQCGLPCGMOCHKRCHLQCHMPCHNOCIJKCILRCIMQCINPDEJQDEKPDELODEMNDFJRDFKQDFLPDFMODGHIDGKRDGLQDGMPDGNODHJKDHLRDHMQDHNPDIJLDIMRDINQDIOPEFHIEFKREFLQEFMPEFNOEGJKEGLREGMQEGNPEHJLEHMREHNQEHOPEIJMEIKLEINREIOQFGJLFGMRFGNQFGOPFHJMFHKLFHNRFHOQFIJNFIKMFIORFIPQGHJNGHKMGHORGHPQGIJOGIKNGILMGIPRHIJPHIKOHILNHIQRJKLMJKPRJLORJLPQJMNRJMOQJNOPKLNRKLOQKMNQKMOPLMNPMPQRNOQR ABCDEFGHIJKLMNOPQR
Check passed
ABCDABGIACFIACGHADEIADFHAEFGBCEIBCFHBDEHBDFGCDEGDGHIEFHIJKLMJKPRJLORJLPQJMNRJMOQJNOPKLNRKLOQKMNQKMOPLMNPMPQRNOQR


由于所有点分成两组,两组内分布都一样,如果我们都只看一组,而且点的编号按顺序标准化以后,结果就似乎
2n=8
ABCDACFH (出现了额外跨组的圆ACFH)
2n=10
ABDE
2n=12
ACDFABEFBCDE
2n=14
ABEGACDGACEFBCDFDEFG
2n=16
ABCDABGHACFHADEHADFGBCEHBCFGBDEGCDEFEFGH
2n=18
ABCDABGIACFIACGHADEIADFHAEFGBCEIBCFHBDEHBDFGCDEGDGHIEFHI

mathe 发表于 2022-12-14 20:58:34

发现一个有意思的现象,
我们如果选择将$2\pi$进行n等分得到n个角度$t_k=\frac{(2k+1)\pi}{n}$
那么我们计数上面n个角度中的四个不同的$a,b,c,d$使得行列式
\[\left|\begin{matrix}\cos(2a)&\cos(a)&\sin(a)&1\\
\cos(2b)&\cos(b)&\sin(b)&1\\
\cos(2c)&\cos(c)&\sin(c)&1\\
\cos(2d)&\cos(d)&\sin(d)&1\end{matrix}\right|\]
为0的数目
分别得出n=5,6,7,8,9,10,11,12,13,14分别为
1,3,5,10,14,22,30, 43, 55
可以看出前面五项正好和上面单组额外圆的数目匹配.
当然光上面的信息不够充分,但是如果我们继续将所有符合行列式为0的四个$t_k$的编号输出,可以得到如下结果
? getcr2(5) (5->A,1->B,2->C,3->D,4->E)
1 3 4 5(BDEA)
%6 = 1
? getcr2(6) (1->E, 2->F,3->A,4->B,5->C,6->D)
1 2 3 4(EFAB)
1 4 5 6(EBCD)
2 3 5 6(FACD)
%7 = 3
? getcr2(7) (5->D,6->E,7->F,1->G, 2->A,3->B,4->C)
1 2 3 6   (GABE)
1 2 4 5   (GACD)
1 5 6 7   (GDEF)
2 4 6 7   (ACEF)
3 4 5 7   (BCDF)
%8 = 5
? getcr2(8) (8->A, 1->B,2->C,3->D,4->E,5->F,6->G,7->H)
1 2 3 8(BCDA)
1 2 4 7(BCEH)
1 2 5 6(BCFG)
1 3 4 6(BDEG)
1 6 7 8(BGHA)
2 3 4 5(CDEF)
2 5 7 8(CFHA)
3 4 7 8(DEHA)
3 5 6 8(DFGA)
4 5 6 7(EFGH)
%9 = 10
? getcr2(9)
1 2 4 9
1 2 5 8
1 2 6 7
1 3 4 8
1 3 5 7
1 4 5 6
1 7 8 9
2 3 4 7
2 3 5 6
2 6 8 9
3 5 8 9
3 6 7 9
4 5 7 9
4 6 7 8
%10 = 14
我们可以看出上面结果中对于5,6,7,8我们都可以将1,2,3,...等轮换对称映射到A,B,C,...使得两者模式一模一样。唯一的问题是发现n=9时无法匹配上了。
但是另一方面,我发现除了取n个角度为$t_k=\frac{(2k+1)\pi}{n}$,换成n个角度为n个角度$t_k=\frac{2k\pi}{n}$时,对于大部分n也可以有同样数目的行列式为0,比如对于n=9,这时可以得到下面的编号序列
? getcr1(9) (3->A,4->B,5->C,6->D,7->E,8->F,9->G,1->H,2->I)
1 2 6 9 (HIDG)
1 2 7 8 (HIEF)
1 3 5 9 (HACG)
1 3 6 8 (HADF)
1 4 5 8 (HBCF)
1 4 6 7 (HBDE)
2 3 4 9 (IABG)
2 3 5 8 (IACF)
2 3 6 7 (IADE)
2 4 5 7 (IBCE)
3 4 5 6 (ABCD)
3 7 8 9 (AEFG)
4 6 8 9 (BDFG)
5 6 7 9 (CDEG)
我们可以发现这时模式有和我们已经找到的2n=18的解匹配上了。
由此我们可以有充分的信心认为两者是密切关联的。然后通过计算行列为0的数目,我们可以对应到A008610
所以对于$n\ge 10$,我们可以猜测
如果n是4的倍数
$A337747=n*((n-2)*(n-2) + 4)/32+2*A008610$
如果n除以4余2,
$A337747=n*((n-2)*(n-2) )/32+2*A008610$

而本帖中行列式为0的几何意义上对于椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),选择其上n个点\((a\cos(t_k),b\sin(t_k))\), 其中四点共圆的点组,比如下面对应n=8的图


页: 1 2 3 [4] 5 6
查看完整版本: 最多五点圆数目