连续抛掷一枚均匀的硬币,直到出现正面向上, 紧接着出现反面向上为止的概率是多少?
概率论导论 p143 23题疑问:
1,答案中k-2是怎么统计的?为什么要讨论k-2
2,k-1为什么会出现在概率公式中?概率公式中的k-1与文字讨论部分的k-1有什么关系?是计数么?我看不出这里有排列组合关系。
问题:
现在假定连续抛掷一枚均匀的硬币,直到出现正面向上, 紧接着出现反面向上为止.写出抛掷次数的分布列、期望值和方差.
答案:
If k > 2, there are k -1 sequences that lead to the event { X = k } . One such sequence is H · · · HT, where k -1 heads are followed by a tail. The other k-2 possible sequences are of the form T · · · TH · · · HT, for various lengths of the initial T · · · T segment. For the case where k = 2, there is only one (hence k-1) possible sequence that leads to the event { X = k } , namely the sequence HT. Therefore, for any k ≥ 2,
\(P(X=k)=(k-1)(1/2)^{k }\)
https://s1.ax1x.com/2023/02/15/pS7YRt1.png
页:
[1]