abcxyz对应的四面体体积公式大于零,那么abcxyz能构成四面体吗?
abc是从同一个顶点出发的三条棱,xyz是abc的三条对棱。假设abcxyz都是大于零的六个变量。那么当对应的体积公式对应的结果大于零的时候,
abcxyz能构成四面体吗?
这个问题源于三角形的面积公式海伦公式s^2=p(p-a)(p-b)(p-c)
限制abc都大于零,
不妨假设0<a<=b<=c
p(p-a)(p-b)(p-c)>0,则p的变量范围是(-无穷,0)∪(a,b)∪(c,正无穷)
由于abc都大于零,所以p的范围是(a,b)∪(c,正无穷),
先讨论
a<(a+b+c)/2<b,左边的小于号明显是成立的,右边的小于号明显是不成立的(与b<=c矛盾),
因此得到0<a<=b<=c<p,因此得到任意两边的和都大于第三边,因此abc能构成一个三角形。
现在把问题推向四面体,试问:如果对应的四面体体积公式的值大于零的时候,能得到abcxyz能构成四面体吗?
下面这个是四面体体积公式的mathematica代码
fun:=Sqrt/288]
如果不能构成,能给出一个反例吗? nyy 发表于 2023-3-27 16:02
如果不能构成,能给出一个反例吗?
反例很多,我自己就能穷举法很多出来
{a,b,c,x,y,z}结果如下:
{25,61,97,13,68,32}
{17,53,78,20,98,75}
{82,14,95,53,10,32}
{67,94,25,62,31,14}
{16,68,97,24,62,10}
{72,23,24,52,21,97}
{10,51,25,91,43,24}
{32,16,68,96,17,62}
{93,19,47,23,20,59}
{11,46,10,93,48,11}
{87,62,12,10,46,22}
{41,18,25,84,10,96}
{19,65,14,82,44,23}
{13,33,87,11,53,16}
{20,12,67,90,26,52}
貌似反例非常的多!
nyy 发表于 2023-3-28 14:29
反例很多,我自己就能穷举法很多出来
{a,b,c,x,y,z}结果如下:
Clear["Global`*"];(*删除所有变量*)
(*子函数,四面体体积公式,a,b,c分别是从一个顶点出发的三条棱,x,y,z分别是对棱*)
fun:=Sqrt/288]
(*子函数,海伦公式*)
heron:=Module[{p=(a+b+c)/2},Sqrt]
Do[
(*随机产生六条棱*)
a=RandomInteger[{10,99}];
b=RandomInteger[{10,99}];
c=RandomInteger[{10,99}];
x=RandomInteger[{10,99}];
y=RandomInteger[{10,99}];
z=RandomInteger[{10,99}];
vol=fun^2;(*计算体积的平方*)
(*用海伦公式计算4个面的面积的平方,如果能构成三角形,则面积平方大于零,否则小于零*)
s1=heron^2;
s2=heron^2;
s3=heron^2;
s4=heron^2;
(*如果体积的平方大于零,并且其中一个面不能构成三角形,则输出结果*)
If],Print[{a,b,c,x,y,z}]]
,{k,3000}(*重复3000次*)
]
给出我的代码,如果试验个100次,还是能找到结果的!虽然看样子满足要求的结果还是比较少的! 本帖最后由 nyy 于 2023-3-28 14:55 编辑
nyy 发表于 2023-3-28 14:29
反例很多,我自己就能穷举法很多出来
{a,b,c,x,y,z}结果如下:
给出六条棱,并且给出四个面的面积符号(能构成三角形则+1,否则-1),输出结果如下:
{99,15,49,13,12,73,-1,-1,-1,-1}
{10,58,10,13,46,77,-1,-1,-1,-1}
{11,39,47,99,13,72,-1,-1,-1,-1}
{53,12,10,32,39,89,-1,-1,-1,-1}
{12,49,95,16,53,18,-1,-1,-1,-1}
{86,10,68,32,12,45,-1,-1,-1,-1}
{12,42,19,16,68,89,-1,-1,-1,-1}
{24,87,47,13,20,56,-1,-1,-1,-1}
{45,14,13,83,14,98,-1,-1,-1,-1}
{40,97,64,17,13,56,-1,-1,-1,-1}
{60,12,28,51,12,89,-1,-1,-1,-1}
{92,20,55,16,17,61,-1,-1,-1,-1}
{23,18,66,22,91,49,-1,-1,-1,-1}
{54,89,15,53,19,20,-1,-1,-1,-1}
{65,96,23,61,10,24,-1,-1,-1,-1}
{21,63,95,23,61,24,-1,-1,-1,-1}
{38,11,38,55,93,14,-1,-1,-1,-1}
{46,95,10,73,22,32,-1,-1,-1,-1}
{39,26,46,15,99,74,-1,-1,-1,-1}
{95,50,22,22,49,14,-1,-1,-1,-1}
{39,10,84,73,12,27,-1,-1,-1,-1}
{93,26,46,11,26,47,-1,-1,-1,-1}
{95,12,69,41,23,72,-1,-1,-1,-1}
{35,64,28,99,69,25,-1,-1,-1,-1}
{94,56,27,14,59,17,-1,-1,-1,-1}
{12,56,11,88,42,25,-1,-1,-1,-1}
从上面可以看出:如果四面体体积大于零,
并且abcxyz不构成四面体,则四个面都不构成三角形,
问题来了:如果体积表达式大于零,并且其中一个面也构成三角形,
此时是否就能构成四面体了?
Clear["Global`*"];(*删除所有变量*)
(*子函数,四面体体积公式,a,b,c分别是从一个顶点出发的三条棱,x,y,z分别是对棱*)
fun:=Sqrt/288]
(*子函数,海伦公式*)
heron:=Module[{p=(a+b+c)/2},Sqrt]
Do[
(*随机产生六条棱*)
a=RandomInteger[{10,99}];
b=RandomInteger[{10,99}];
c=RandomInteger[{10,99}];
x=RandomInteger[{10,99}];
y=RandomInteger[{10,99}];
z=RandomInteger[{10,99}];
vol=fun^2;(*计算体积的平方*)
(*用海伦公式计算4个面的面积的平方,如果能构成三角形,则面积平方大于零,否则小于零*)
s1=heron^2;If;(*k1是面积符号*)
s2=heron^2;If;
s3=heron^2;If;
s4=heron^2;If;
(*如果体积的平方大于零,并且其中一个面不能构成三角形,则输出结果*)
If],Print[{a,b,c,x,y,z,k1,k2,k3,k4}]]
,{k,3000}(*重复3000次*)
]
我个人怀疑:如果四面体的体积表达式大于零,那么要么四个面都能构成三角形,要么四个面都不能构成三角形!
不存在有的面能构成三角形且有的面不能构成三角形的情况。
全部代码如下:
Clear["Global`*"];(*删除所有变量*)
(*子函数,四面体体积公式,a,b,c分别是从一个顶点出发的三条棱,x,y,z分别是对棱*)
fun:=Sqrt/288]
(*子函数,海伦公式*)
heron:=Module[{p=(a+b+c)/2},Sqrt]
Do[
(*随机产生六条棱*)
a=RandomInteger[{10,99}];
b=RandomInteger[{10,99}];
c=RandomInteger[{10,99}];
x=RandomInteger[{10,99}];
y=RandomInteger[{10,99}];
z=RandomInteger[{10,99}];
vol=fun^2;(*计算体积的平方*)
(*用海伦公式计算4个面的面积的平方,如果能构成三角形,则面积平方大于零,否则小于零*)
s1=heron^2;If;(*k1是面积符号*)
s2=heron^2;If;
s3=heron^2;If;
s4=heron^2;If;
(*如果体积的平方大于零,并且其中一个面不能构成三角形,则输出结果*)
If],Print[{a,b,c,x,y,z,k1,k2,k3,k4}]]
,{k,3000}(*重复3000次*)
]
数值证据如下:
{99,92,95,63,84,93,+1,+1,+1,+1}
{77,90,86,29,56,38,+1,+1,+1,+1}
{89,84,82,73,76,38,+1,+1,+1,+1}
{91,74,61,61,59,93,+1,+1,+1,+1}
{58,91,81,55,69,80,+1,+1,+1,+1}
{88,78,87,90,94,94,+1,+1,+1,+1}
{95,58,17,57,99,68,+1,+1,+1,+1}
{86,73,92,62,68,87,+1,+1,+1,+1}
{97,94,72,49,46,56,+1,+1,+1,+1}
{86,54,96,68,32,46,+1,+1,+1,+1}
{58,79,56,86,96,93,+1,+1,+1,+1}
{56,49,36,31,45,56,+1,+1,+1,+1}
{49,63,55,62,49,25,+1,+1,+1,+1}
{99,84,66,83,91,80,+1,+1,+1,+1}
{46,76,17,66,58,83,+1,+1,+1,+1}
{73,75,91,92,81,98,+1,+1,+1,+1}
{24,68,13,76,26,85,+1,+1,+1,+1}
{44,33,18,40,33,70,+1,+1,+1,+1}
{77,79,32,83,69,52,+1,+1,+1,+1}
{14,48,45,62,40,55,+1,+1,+1,+1}
{77,75,50,92,62,89,+1,+1,+1,+1}
{43,92,63,91,44,67,+1,+1,+1,+1}
{54,81,99,93,51,63,+1,+1,+1,+1}
{60,85,92,77,42,49,+1,+1,+1,+1}
{94,71,93,73,88,73,+1,+1,+1,+1}
{57,56,88,78,79,32,+1,+1,+1,+1}
{81,59,73,44,59,76,+1,+1,+1,+1}
{19,98,34,18,13,59,-1,-1,-1,-1}
{88,59,35,50,83,69,+1,+1,+1,+1}
{81,92,52,85,68,62,+1,+1,+1,+1}
{61,54,55,31,60,56,+1,+1,+1,+1}
{95,46,71,27,79,77,+1,+1,+1,+1}
{42,59,57,26,42,60,+1,+1,+1,+1}
{77,85,42,50,51,67,+1,+1,+1,+1}
{39,79,67,66,71,92,+1,+1,+1,+1}
{77,70,45,37,56,58,+1,+1,+1,+1}
{53,65,76,46,98,83,+1,+1,+1,+1}
{91,90,83,71,76,83,+1,+1,+1,+1}
{56,52,26,68,62,96,+1,+1,+1,+1}
{19,22,53,68,61,18,+1,+1,+1,+1}
{84,94,91,30,52,77,+1,+1,+1,+1}
{55,46,56,61,39,80,+1,+1,+1,+1}
{15,87,30,78,27,86,+1,+1,+1,+1}
{84,47,89,61,83,69,+1,+1,+1,+1}
{98,67,99,38,79,56,+1,+1,+1,+1}
{19,80,40,10,10,40,-1,-1,-1,-1}
{70,80,52,67,85,85,+1,+1,+1,+1}
{54,47,74,67,95,39,+1,+1,+1,+1}
{42,70,34,77,66,51,+1,+1,+1,+1}
{62,23,78,69,34,47,+1,+1,+1,+1}
{23,57,35,27,33,48,+1,+1,+1,+1}
{58,55,98,67,48,29,+1,+1,+1,+1}
{70,69,93,59,89,40,+1,+1,+1,+1}
{41,65,32,67,63,96,+1,+1,+1,+1}
{47,58,20,59,64,81,+1,+1,+1,+1}
{53,49,65,61,41,66,+1,+1,+1,+1}
{94,74,37,61,78,63,+1,+1,+1,+1}
{93,60,62,31,54,38,+1,+1,+1,+1}
{47,38,61,50,63,46,+1,+1,+1,+1}
{59,21,74,73,62,57,+1,+1,+1,+1}
{99,61,51,69,69,63,+1,+1,+1,+1}
{67,82,33,92,56,92,+1,+1,+1,+1}
{71,66,84,85,34,84,+1,+1,+1,+1}
{64,25,55,38,69,50,+1,+1,+1,+1}
{84,99,81,59,65,73,+1,+1,+1,+1}
{43,38,55,56,96,73,+1,+1,+1,+1}
{57,77,73,44,61,53,+1,+1,+1,+1}
{90,83,40,48,52,43,+1,+1,+1,+1}
{60,93,55,76,57,84,+1,+1,+1,+1}
{49,72,79,89,51,67,+1,+1,+1,+1}
{98,29,72,53,51,91,+1,+1,+1,+1}
{69,57,71,49,41,25,+1,+1,+1,+1}
{43,44,55,68,64,55,+1,+1,+1,+1}
{88,74,85,36,79,63,+1,+1,+1,+1}
{77,67,41,68,94,36,+1,+1,+1,+1}
{27,58,16,79,56,10,-1,-1,-1,-1}
{66,45,29,59,76,97,+1,+1,+1,+1}
{35,80,72,91,48,93,+1,+1,+1,+1}
{56,45,41,69,85,57,+1,+1,+1,+1}
{35,72,38,62,27,61,+1,+1,+1,+1}
{45,66,37,53,52,86,+1,+1,+1,+1}
{15,50,99,90,92,49,+1,+1,+1,+1}
{96,94,98,80,81,27,+1,+1,+1,+1}
{46,87,58,75,79,95,+1,+1,+1,+1}
{58,91,55,98,97,94,+1,+1,+1,+1}
{94,69,52,69,73,64,+1,+1,+1,+1}
{83,64,87,30,90,64,+1,+1,+1,+1}
{50,50,55,54,65,59,+1,+1,+1,+1}
{57,71,83,60,44,51,+1,+1,+1,+1}
{60,51,82,47,64,28,+1,+1,+1,+1}
{66,40,36,54,79,28,+1,+1,+1,+1}
{68,44,72,58,92,88,+1,+1,+1,+1}
{96,44,84,97,34,95,+1,+1,+1,+1}
{65,39,48,22,85,67,+1,+1,+1,+1}
{23,51,92,31,68,18,-1,-1,-1,-1}
{68,38,73,57,98,70,+1,+1,+1,+1}
{94,64,39,38,75,85,+1,+1,+1,+1}
{69,48,90,92,41,82,+1,+1,+1,+1}
{30,52,81,86,57,56,+1,+1,+1,+1}
{73,66,29,69,71,19,+1,+1,+1,+1}
{97,81,81,19,29,25,+1,+1,+1,+1}
{45,69,44,45,13,45,+1,+1,+1,+1}
{64,73,80,38,31,53,+1,+1,+1,+1}
{88,79,26,76,93,49,+1,+1,+1,+1}
{55,50,48,78,14,82,+1,+1,+1,+1}
{69,13,68,70,66,71,+1,+1,+1,+1}
{62,54,53,53,46,34,+1,+1,+1,+1}
{40,69,49,55,48,51,+1,+1,+1,+1}
{52,68,95,60,91,73,+1,+1,+1,+1}
{83,76,81,37,53,65,+1,+1,+1,+1}
{81,77,62,58,53,40,+1,+1,+1,+1}
{97,95,42,56,64,27,+1,+1,+1,+1}
{94,71,54,37,74,62,+1,+1,+1,+1}
{92,94,47,98,76,65,+1,+1,+1,+1}
{53,34,57,65,59,56,+1,+1,+1,+1}
{67,39,92,95,71,68,+1,+1,+1,+1}
{94,88,89,49,52,87,+1,+1,+1,+1}
{13,35,46,93,20,61,-1,-1,-1,-1}
{47,30,45,55,42,71,+1,+1,+1,+1}
{41,57,62,76,57,45,+1,+1,+1,+1}
{77,48,35,71,56,83,+1,+1,+1,+1}
{23,74,60,29,71,87,+1,+1,+1,+1}
{44,62,35,42,10,41,+1,+1,+1,+1}
{69,46,64,69,58,40,+1,+1,+1,+1}
{80,59,48,75,70,56,+1,+1,+1,+1}
{44,54,59,84,93,89,+1,+1,+1,+1}
{96,63,39,78,84,85,+1,+1,+1,+1}
{82,70,58,61,47,44,+1,+1,+1,+1}
{76,53,46,46,58,35,+1,+1,+1,+1}
{72,31,45,36,56,82,+1,+1,+1,+1}
{95,31,44,67,90,98,+1,+1,+1,+1}
{96,72,53,88,85,45,+1,+1,+1,+1}
{56,60,17,64,52,89,+1,+1,+1,+1}
{79,65,44,24,44,42,+1,+1,+1,+1}
{25,50,64,55,60,60,+1,+1,+1,+1}
{98,71,59,73,72,82,+1,+1,+1,+1}
{33,90,51,29,15,55,-1,-1,-1,-1}
{83,99,68,96,52,89,+1,+1,+1,+1}
{78,64,37,58,58,29,+1,+1,+1,+1}
{39,96,33,92,60,98,+1,+1,+1,+1}
{55,88,41,73,62,89,+1,+1,+1,+1}
{88,59,79,49,66,67,+1,+1,+1,+1}
{96,38,87,51,87,81,+1,+1,+1,+1}
{55,49,38,65,49,52,+1,+1,+1,+1}
{74,68,43,64,51,82,+1,+1,+1,+1}
{96,53,48,82,75,94,+1,+1,+1,+1}
{78,32,28,40,83,73,+1,+1,+1,+1}
{56,55,62,75,64,89,+1,+1,+1,+1}
{64,43,61,63,42,37,+1,+1,+1,+1}
{73,87,43,77,58,35,+1,+1,+1,+1}
{31,51,66,32,52,29,+1,+1,+1,+1}
{36,13,95,74,50,19,-1,-1,-1,-1}
{72,40,80,50,24,40,+1,+1,+1,+1}
{67,91,92,74,95,66,+1,+1,+1,+1}
{48,67,84,56,69,64,+1,+1,+1,+1}
{37,44,86,92,84,58,+1,+1,+1,+1}
{84,98,94,88,46,84,+1,+1,+1,+1}
{68,50,56,63,69,29,+1,+1,+1,+1}
{80,72,48,87,86,93,+1,+1,+1,+1}
{45,66,59,47,91,99,+1,+1,+1,+1}
{68,60,53,61,77,77,+1,+1,+1,+1}
{82,18,69,76,36,92,+1,+1,+1,+1}
{78,64,55,86,46,94,+1,+1,+1,+1}
{71,95,88,94,98,55,+1,+1,+1,+1}
{81,21,52,25,10,46,-1,-1,-1,-1}
{62,55,81,83,64,71,+1,+1,+1,+1}
{77,56,72,50,57,71,+1,+1,+1,+1}
{47,61,49,33,46,67,+1,+1,+1,+1}
{37,70,75,99,48,58,+1,+1,+1,+1}
{62,89,58,72,48,69,+1,+1,+1,+1}
{90,83,94,66,75,50,+1,+1,+1,+1}
{44,37,53,20,46,45,+1,+1,+1,+1}
{10,67,17,12,45,97,-1,-1,-1,-1}
{43,75,31,93,48,90,+1,+1,+1,+1}
{40,82,74,55,64,83,+1,+1,+1,+1}
{99,79,66,23,58,60,+1,+1,+1,+1}
{74,81,91,91,69,24,+1,+1,+1,+1}
{34,73,77,60,84,96,+1,+1,+1,+1}
{96,48,65,48,84,60,+1,+1,+1,+1}
{89,70,31,65,80,71,+1,+1,+1,+1}
{82,48,69,32,24,43,+1,+1,+1,+1}
{88,64,98,70,69,74,+1,+1,+1,+1}
{69,24,62,40,63,59,+1,+1,+1,+1}
{98,87,59,36,87,97,+1,+1,+1,+1}
{97,83,59,75,92,33,+1,+1,+1,+1}
{76,56,50,74,91,81,+1,+1,+1,+1}
{97,88,80,40,96,78,+1,+1,+1,+1}
{88,52,19,48,88,88,+1,+1,+1,+1}
{42,27,44,30,32,39,+1,+1,+1,+1}
{67,27,64,55,39,45,+1,+1,+1,+1}
{94,66,51,37,67,93,+1,+1,+1,+1}
{55,72,40,61,48,68,+1,+1,+1,+1}
{88,88,73,73,89,62,+1,+1,+1,+1}
{84,19,31,19,96,91,+1,+1,+1,+1}
{67,89,56,98,59,76,+1,+1,+1,+1}
{75,83,47,46,56,49,+1,+1,+1,+1}
{97,82,31,87,82,61,+1,+1,+1,+1}
{51,97,36,72,38,48,+1,+1,+1,+1}
{77,53,35,82,88,62,+1,+1,+1,+1}
{76,32,33,38,52,69,+1,+1,+1,+1}
{99,18,67,67,78,99,+1,+1,+1,+1}
{61,25,39,48,56,73,+1,+1,+1,+1}
{61,62,96,62,82,35,+1,+1,+1,+1}
{68,32,62,66,59,88,+1,+1,+1,+1}
{69,60,80,36,70,81,+1,+1,+1,+1}
{52,57,36,64,71,81,+1,+1,+1,+1}
{91,97,95,50,18,38,+1,+1,+1,+1}
{86,82,84,60,50,36,+1,+1,+1,+1}
{48,58,42,55,44,38,+1,+1,+1,+1}
{38,54,55,62,75,76,+1,+1,+1,+1}
{74,67,72,89,11,98,+1,+1,+1,+1}
{99,69,68,71,60,68,+1,+1,+1,+1}
{22,62,56,96,65,53,+1,+1,+1,+1}
{30,53,46,77,36,44,+1,+1,+1,+1}
{50,52,81,76,80,26,+1,+1,+1,+1}
{52,87,69,93,66,75,+1,+1,+1,+1}
{26,97,36,98,50,97,+1,+1,+1,+1}
{41,49,60,35,65,40,+1,+1,+1,+1}
{88,69,48,62,94,44,+1,+1,+1,+1}
{13,30,88,76,78,27,+1,+1,+1,+1}
{96,90,24,71,77,53,+1,+1,+1,+1}
{28,80,45,38,40,76,+1,+1,+1,+1}
{84,75,30,64,85,76,+1,+1,+1,+1}
{90,94,69,98,82,68,+1,+1,+1,+1}
{95,94,76,74,71,82,+1,+1,+1,+1}
{63,60,49,75,73,48,+1,+1,+1,+1}
{98,80,75,83,76,43,+1,+1,+1,+1}
{52,75,92,70,74,67,+1,+1,+1,+1}
{68,13,45,56,91,71,+1,+1,+1,+1}
{95,80,71,77,63,66,+1,+1,+1,+1}
{61,65,19,68,55,72,+1,+1,+1,+1}
{61,93,88,83,43,97,+1,+1,+1,+1}
{90,48,74,39,27,58,+1,+1,+1,+1}
{74,29,52,53,53,85,+1,+1,+1,+1}
{41,66,50,80,37,91,+1,+1,+1,+1}
{48,64,29,43,47,62,+1,+1,+1,+1}
{84,65,77,59,53,59,+1,+1,+1,+1}
{58,55,73,61,64,83,+1,+1,+1,+1}
{66,73,43,75,55,34,+1,+1,+1,+1}
{94,39,42,49,85,56,+1,+1,+1,+1}
{77,98,68,72,39,85,+1,+1,+1,+1}
{60,16,77,68,67,63,+1,+1,+1,+1}
{73,44,52,16,41,35,+1,+1,+1,+1}
{34,46,59,63,55,18,+1,+1,+1,+1}
{62,82,40,86,71,25,+1,+1,+1,+1}
{99,65,26,57,90,79,+1,+1,+1,+1}
{79,91,91,82,19,85,+1,+1,+1,+1}
{35,46,79,83,52,48,+1,+1,+1,+1}
{81,49,62,79,68,82,+1,+1,+1,+1}
{43,76,84,69,54,57,+1,+1,+1,+1}
{82,33,53,58,93,91,+1,+1,+1,+1}
{70,56,79,71,46,92,+1,+1,+1,+1}
{56,43,61,57,97,59,+1,+1,+1,+1}
{88,63,90,62,70,77,+1,+1,+1,+1}
{72,54,49,89,85,53,+1,+1,+1,+1}
{30,77,50,46,41,52,+1,+1,+1,+1}
{82,41,88,72,62,81,+1,+1,+1,+1}
{28,91,46,95,64,72,+1,+1,+1,+1}
{44,68,80,95,40,62,+1,+1,+1,+1}
{63,63,61,48,60,68,+1,+1,+1,+1}
{87,48,93,71,89,89,+1,+1,+1,+1}
{92,41,80,54,51,66,+1,+1,+1,+1}
{57,19,10,41,79,15,-1,-1,-1,-1}
{79,94,72,76,89,90,+1,+1,+1,+1}
{42,90,66,75,51,97,+1,+1,+1,+1}
{86,89,93,48,99,85,+1,+1,+1,+1}
{76,77,62,72,97,74,+1,+1,+1,+1}
{59,99,71,37,39,56,+1,+1,+1,+1}
{57,42,48,51,70,63,+1,+1,+1,+1}
{88,91,94,70,93,30,+1,+1,+1,+1}
{76,90,26,85,71,23,+1,+1,+1,+1}
{91,85,89,27,32,47,+1,+1,+1,+1}
{22,67,33,47,32,53,+1,+1,+1,+1}
{29,50,56,84,56,59,+1,+1,+1,+1}
{81,79,40,92,67,77,+1,+1,+1,+1}
{94,81,71,40,42,75,+1,+1,+1,+1}
{62,24,36,25,85,77,+1,+1,+1,+1}
{40,73,46,68,11,72,+1,+1,+1,+1}
{83,64,62,50,43,50,+1,+1,+1,+1}
{73,92,62,47,39,80,+1,+1,+1,+1}
{81,77,62,82,63,78,+1,+1,+1,+1}
{65,66,70,33,86,99,+1,+1,+1,+1}
{21,25,24,36,31,25,+1,+1,+1,+1}
{43,64,68,83,37,65,+1,+1,+1,+1}
{67,55,49,68,84,93,+1,+1,+1,+1}
{73,44,49,90,99,55,+1,+1,+1,+1}
{95,53,39,66,99,77,+1,+1,+1,+1}
{59,33,19,23,45,32,+1,+1,+1,+1}
{47,67,46,54,10,57,+1,+1,+1,+1}
{46,93,92,86,57,59,+1,+1,+1,+1}
{68,36,51,23,80,64,+1,+1,+1,+1}
{86,78,92,18,37,26,+1,+1,+1,+1}
{33,60,66,43,71,69,+1,+1,+1,+1}
{48,83,40,62,33,66,+1,+1,+1,+1}
{98,86,73,68,46,85,+1,+1,+1,+1}
{54,86,68,43,78,74,+1,+1,+1,+1}
{42,58,42,54,43,22,+1,+1,+1,+1}
{93,79,82,66,89,46,+1,+1,+1,+1}
{28,91,39,76,44,82,+1,+1,+1,+1}
{46,70,57,63,85,93,+1,+1,+1,+1}
{90,34,94,86,97,58,+1,+1,+1,+1}
{34,57,37,83,59,60,+1,+1,+1,+1}
{75,99,90,85,76,93,+1,+1,+1,+1}
{72,76,78,81,86,99,+1,+1,+1,+1}
{62,44,62,68,93,37,+1,+1,+1,+1}
{66,85,93,44,51,47,+1,+1,+1,+1}
{99,97,80,52,62,87,+1,+1,+1,+1}
{85,62,78,65,31,73,+1,+1,+1,+1}
{79,76,91,98,65,63,+1,+1,+1,+1}
{35,89,34,99,17,87,+1,+1,+1,+1}
{68,84,31,72,82,97,+1,+1,+1,+1}
{61,85,85,77,80,97,+1,+1,+1,+1}
{64,35,53,21,48,46,+1,+1,+1,+1}
{36,81,81,22,64,57,+1,+1,+1,+1}
{85,91,34,70,61,34,+1,+1,+1,+1}
{55,73,66,55,44,77,+1,+1,+1,+1}
{78,92,84,87,80,45,+1,+1,+1,+1}
{66,84,36,58,42,36,+1,+1,+1,+1}
{37,57,57,40,74,52,+1,+1,+1,+1}
{93,94,49,76,98,64,+1,+1,+1,+1}
{40,48,80,90,85,72,+1,+1,+1,+1}
{76,71,52,89,56,64,+1,+1,+1,+1}
{99,86,43,80,79,89,+1,+1,+1,+1}
{42,60,20,49,51,73,+1,+1,+1,+1}
{24,35,85,72,73,25,+1,+1,+1,+1}
{13,98,55,73,46,94,+1,+1,+1,+1}
{38,67,68,77,71,45,+1,+1,+1,+1}
{82,96,83,75,85,98,+1,+1,+1,+1}
{88,65,59,59,66,63,+1,+1,+1,+1}
{89,90,82,39,67,65,+1,+1,+1,+1}
{40,24,38,43,64,22,+1,+1,+1,+1}
{84,33,86,90,55,71,+1,+1,+1,+1}
{92,72,73,59,59,84,+1,+1,+1,+1}
{29,50,94,96,94,49,+1,+1,+1,+1}
{14,77,21,81,15,74,+1,+1,+1,+1}
{59,80,65,48,31,28,+1,+1,+1,+1}
{58,50,29,40,50,43,+1,+1,+1,+1}
{15,60,71,43,78,64,+1,+1,+1,+1}
{48,31,42,28,57,56,+1,+1,+1,+1}
{73,62,62,43,37,51,+1,+1,+1,+1}
{24,50,34,46,47,51,+1,+1,+1,+1}
{49,83,19,61,17,12,-1,-1,-1,-1}
{61,56,98,82,65,69,+1,+1,+1,+1}
{60,95,32,79,72,94,+1,+1,+1,+1}
{60,66,57,96,85,77,+1,+1,+1,+1}
{58,86,55,46,39,42,+1,+1,+1,+1}
{48,86,90,76,48,80,+1,+1,+1,+1}
{32,66,43,29,61,73,+1,+1,+1,+1}
{66,35,96,92,64,58,+1,+1,+1,+1}
{88,39,67,66,62,72,+1,+1,+1,+1}
{54,58,20,53,59,44,+1,+1,+1,+1}
{67,48,25,36,47,50,+1,+1,+1,+1}
{66,81,65,60,41,38,+1,+1,+1,+1}
{25,35,41,20,28,15,+1,+1,+1,+1}
{43,59,32,58,64,91,+1,+1,+1,+1}
{67,71,66,89,55,58,+1,+1,+1,+1}
{73,39,45,71,56,88,+1,+1,+1,+1}
{54,74,80,81,30,74,+1,+1,+1,+1}
{53,75,38,69,43,33,+1,+1,+1,+1}
{92,46,68,99,89,91,+1,+1,+1,+1}
{67,79,44,60,25,61,+1,+1,+1,+1}
{49,31,49,60,69,65,+1,+1,+1,+1}
{98,99,97,42,12,42,+1,+1,+1,+1}
{40,79,87,83,63,48,+1,+1,+1,+1}
{69,57,67,96,17,94,+1,+1,+1,+1}
{75,79,39,62,55,99,+1,+1,+1,+1}
{63,80,80,38,56,77,+1,+1,+1,+1}
{18,52,91,16,62,22,-1,-1,-1,-1}
{34,20,54,58,58,44,+1,+1,+1,+1}
{67,94,83,69,35,76,+1,+1,+1,+1}
{82,84,85,79,44,89,+1,+1,+1,+1}
{40,63,83,58,57,27,+1,+1,+1,+1}
{73,94,88,35,40,50,+1,+1,+1,+1}
{36,77,14,60,12,18,-1,-1,-1,-1}
{62,18,71,67,73,72,+1,+1,+1,+1}
{96,96,94,48,55,99,+1,+1,+1,+1}
{70,69,29,81,95,84,+1,+1,+1,+1}
{19,49,68,60,86,61,+1,+1,+1,+1}
{84,76,90,38,27,31,+1,+1,+1,+1}
{96,79,95,70,36,58,+1,+1,+1,+1}
{73,16,90,90,97,87,+1,+1,+1,+1}
{86,35,79,64,40,71,+1,+1,+1,+1}
{74,79,75,40,28,36,+1,+1,+1,+1}
{51,24,46,51,52,38,+1,+1,+1,+1}
{51,61,48,41,37,52,+1,+1,+1,+1}
{81,62,73,67,81,86,+1,+1,+1,+1}
{43,97,55,90,24,98,+1,+1,+1,+1}
{79,68,78,34,76,65,+1,+1,+1,+1}
{63,62,44,43,33,47,+1,+1,+1,+1}
{52,56,53,58,50,29,+1,+1,+1,+1}
{57,52,44,74,73,93,+1,+1,+1,+1}
{46,67,55,49,26,45,+1,+1,+1,+1}
{81,65,66,54,46,70,+1,+1,+1,+1}
{47,49,54,64,52,26,+1,+1,+1,+1}
{95,73,67,63,45,74,+1,+1,+1,+1}
{58,16,18,53,93,33,-1,-1,-1,-1}
{90,58,19,49,84,59,+1,+1,+1,+1}
{56,56,53,89,93,79,+1,+1,+1,+1}
{30,98,57,80,54,98,+1,+1,+1,+1}
{56,19,39,40,59,71,+1,+1,+1,+1}
{54,86,38,68,29,80,+1,+1,+1,+1}
{83,57,72,80,44,79,+1,+1,+1,+1}
{82,38,66,51,38,66,+1,+1,+1,+1}
{11,81,80,43,80,78,+1,+1,+1,+1}
{61,61,54,50,30,43,+1,+1,+1,+1}
{66,38,74,58,54,65,+1,+1,+1,+1}
{75,39,34,21,73,79,+1,+1,+1,+1}
{55,91,45,92,40,75,+1,+1,+1,+1}
{81,23,26,46,77,95,+1,+1,+1,+1}
{55,78,87,72,73,95,+1,+1,+1,+1}
{76,67,75,51,90,53,+1,+1,+1,+1}
{87,66,61,59,33,83,+1,+1,+1,+1}
{80,59,58,63,51,87,+1,+1,+1,+1}
{67,94,72,94,58,99,+1,+1,+1,+1}
{36,93,61,18,18,49,-1,-1,-1,-1}
{81,90,70,81,87,95,+1,+1,+1,+1}
{78,50,58,60,65,91,+1,+1,+1,+1}
{85,80,21,79,89,91,+1,+1,+1,+1}
{76,35,59,45,43,51,+1,+1,+1,+1}
{98,82,53,80,86,76,+1,+1,+1,+1}
{36,78,84,87,76,65,+1,+1,+1,+1}
{64,78,54,30,57,68,+1,+1,+1,+1}
{82,72,66,51,66,61,+1,+1,+1,+1}
{80,67,65,69,73,45,+1,+1,+1,+1}
{88,90,29,81,80,67,+1,+1,+1,+1}
{20,28,84,77,89,33,+1,+1,+1,+1}
{66,25,86,82,84,70,+1,+1,+1,+1}
{40,98,13,65,16,31,-1,-1,-1,-1}
{60,92,51,83,62,71,+1,+1,+1,+1}
{86,44,80,61,49,74,+1,+1,+1,+1}
{13,70,62,71,59,71,+1,+1,+1,+1}
{93,65,41,35,66,33,+1,+1,+1,+1}
{85,85,92,52,29,65,+1,+1,+1,+1}
{91,60,62,31,76,52,+1,+1,+1,+1}
{66,72,69,80,52,38,+1,+1,+1,+1}
{92,37,78,62,94,82,+1,+1,+1,+1}
{50,32,75,99,88,41,+1,+1,+1,+1}
{23,40,62,69,60,36,+1,+1,+1,+1}
{59,34,33,42,63,72,+1,+1,+1,+1}
{61,30,30,32,54,38,+1,+1,+1,+1}
{55,84,84,74,83,51,+1,+1,+1,+1}
{94,93,65,42,34,41,+1,+1,+1,+1}
{72,96,98,92,88,40,+1,+1,+1,+1}
{61,54,39,81,40,92,+1,+1,+1,+1}
{49,74,91,73,71,71,+1,+1,+1,+1}
{99,94,32,88,90,54,+1,+1,+1,+1}
{59,53,80,82,56,61,+1,+1,+1,+1}
{96,60,62,23,84,85,+1,+1,+1,+1}
{66,73,56,52,71,65,+1,+1,+1,+1}
{46,89,97,42,81,84,+1,+1,+1,+1}
{45,69,39,91,44,57,+1,+1,+1,+1}
{34,75,60,77,77,74,+1,+1,+1,+1}
{52,80,70,61,53,65,+1,+1,+1,+1}
{81,31,61,61,55,90,+1,+1,+1,+1}
{99,92,66,41,93,90,+1,+1,+1,+1}
{39,72,54,55,29,67,+1,+1,+1,+1}
{81,80,49,87,59,99,+1,+1,+1,+1}
{70,53,51,76,45,92,+1,+1,+1,+1}
{44,61,42,31,73,91,+1,+1,+1,+1}
{95,74,83,29,56,41,+1,+1,+1,+1}
{80,94,83,29,81,69,+1,+1,+1,+1}
{41,39,73,92,95,35,+1,+1,+1,+1}
{87,56,62,86,90,45,+1,+1,+1,+1}
{97,43,45,24,79,62,+1,+1,+1,+1}
{81,59,47,83,91,50,+1,+1,+1,+1}
{72,77,28,83,80,84,+1,+1,+1,+1}
{50,81,56,94,37,61,+1,+1,+1,+1}
{35,56,40,70,51,58,+1,+1,+1,+1}
{78,75,49,33,48,27,+1,+1,+1,+1}
{43,49,63,67,68,35,+1,+1,+1,+1}
{82,62,78,48,66,24,+1,+1,+1,+1}
{90,55,92,71,78,66,+1,+1,+1,+1}
{80,81,84,53,91,83,+1,+1,+1,+1}
{32,88,87,90,92,75,+1,+1,+1,+1}
{49,80,64,96,78,96,+1,+1,+1,+1}
{68,74,87,85,70,33,+1,+1,+1,+1}
{83,45,55,58,73,67,+1,+1,+1,+1}
{83,90,79,50,43,46,+1,+1,+1,+1}
{73,64,61,77,99,50,+1,+1,+1,+1}
{31,35,77,74,78,23,+1,+1,+1,+1}
{81,47,84,87,65,59,+1,+1,+1,+1}
{45,84,83,54,84,99,+1,+1,+1,+1}
{84,54,54,67,44,90,+1,+1,+1,+1}
{48,63,71,71,70,75,+1,+1,+1,+1}
{79,55,97,63,71,49,+1,+1,+1,+1}
{87,28,35,56,82,92,+1,+1,+1,+1}
{83,18,45,46,73,85,+1,+1,+1,+1}
{46,90,44,92,57,76,+1,+1,+1,+1}
{98,48,76,59,71,94,+1,+1,+1,+1}
{78,63,79,87,56,43,+1,+1,+1,+1}
{38,67,65,49,91,82,+1,+1,+1,+1}
{93,50,68,64,85,55,+1,+1,+1,+1}
{79,16,50,38,61,68,+1,+1,+1,+1}
{56,56,98,49,68,40,+1,+1,+1,+1}
{53,70,51,90,97,95,+1,+1,+1,+1}
{75,72,99,99,42,96,+1,+1,+1,+1}
{21,45,50,76,64,30,+1,+1,+1,+1}
{81,99,85,50,41,70,+1,+1,+1,+1}
{92,81,94,58,70,97,+1,+1,+1,+1}
{56,52,41,76,33,92,+1,+1,+1,+1}
{87,49,65,78,99,76,+1,+1,+1,+1}
{68,19,61,68,55,59,+1,+1,+1,+1}
{85,78,95,56,30,35,+1,+1,+1,+1}
{97,68,10,30,63,20,-1,-1,-1,-1}
{35,77,31,58,37,54,+1,+1,+1,+1}
{70,53,80,61,63,82,+1,+1,+1,+1}
{44,53,31,42,68,66,+1,+1,+1,+1}
{99,91,44,71,68,39,+1,+1,+1,+1}
{48,87,50,88,78,65,+1,+1,+1,+1}
{48,82,60,53,82,90,+1,+1,+1,+1}
{73,32,44,55,69,69,+1,+1,+1,+1}
{61,75,66,31,46,44,+1,+1,+1,+1}
{22,32,34,50,38,27,+1,+1,+1,+1}
{95,34,63,71,87,90,+1,+1,+1,+1}
{58,43,75,85,80,40,+1,+1,+1,+1}
{99,89,37,82,99,48,+1,+1,+1,+1}
{67,79,93,42,65,50,+1,+1,+1,+1}
{58,83,66,70,64,45,+1,+1,+1,+1}
{26,61,97,15,63,10,-1,-1,-1,-1}
{69,53,42,84,88,63,+1,+1,+1,+1}
{50,59,58,45,41,39,+1,+1,+1,+1}
{67,61,42,85,86,66,+1,+1,+1,+1}
{88,95,78,79,33,74,+1,+1,+1,+1}
{83,78,43,76,90,94,+1,+1,+1,+1}
{56,41,88,98,83,73,+1,+1,+1,+1}
{57,78,51,76,80,65,+1,+1,+1,+1}
{22,57,76,48,68,53,+1,+1,+1,+1}
{66,14,45,54,37,74,+1,+1,+1,+1}
{32,67,30,90,13,95,+1,+1,+1,+1}
{90,67,69,68,34,86,+1,+1,+1,+1}
{37,50,45,68,11,63,+1,+1,+1,+1}
{74,76,53,55,32,48,+1,+1,+1,+1}
{85,88,91,48,52,39,+1,+1,+1,+1}
{89,44,57,24,71,78,+1,+1,+1,+1}
{75,68,14,63,67,49,+1,+1,+1,+1}
{66,27,32,45,65,83,+1,+1,+1,+1}
{68,53,57,37,71,86,+1,+1,+1,+1}
{87,77,69,68,59,34,+1,+1,+1,+1}
{53,31,35,58,42,77,+1,+1,+1,+1}
{91,66,37,48,94,85,+1,+1,+1,+1}
{78,61,83,78,28,74,+1,+1,+1,+1}
{67,95,53,43,72,92,+1,+1,+1,+1}
{84,52,99,99,80,56,+1,+1,+1,+1}
{83,62,86,34,98,72,+1,+1,+1,+1}
{94,83,51,47,89,90,+1,+1,+1,+1}
{91,64,86,48,85,69,+1,+1,+1,+1}
{76,92,94,95,61,45,+1,+1,+1,+1}
{59,88,42,83,45,90,+1,+1,+1,+1}
{97,80,52,53,74,56,+1,+1,+1,+1}
{77,66,61,79,82,13,+1,+1,+1,+1}
{98,15,60,24,24,66,-1,-1,-1,-1}
{82,78,37,44,78,84,+1,+1,+1,+1}
{78,43,73,86,19,89,+1,+1,+1,+1}
{49,48,34,34,22,49,+1,+1,+1,+1}
{74,70,49,52,47,43,+1,+1,+1,+1}
{23,30,39,55,48,29,+1,+1,+1,+1}
{56,57,16,50,56,61,+1,+1,+1,+1}
{61,42,88,89,92,66,+1,+1,+1,+1}
{45,39,83,95,74,59,+1,+1,+1,+1}
{37,56,38,55,27,38,+1,+1,+1,+1}
{60,52,80,90,76,85,+1,+1,+1,+1}
{89,34,82,83,48,79,+1,+1,+1,+1}
{30,50,39,78,40,44,+1,+1,+1,+1}
{69,95,88,42,54,33,+1,+1,+1,+1}
{80,36,49,24,87,74,+1,+1,+1,+1}
{43,50,73,91,72,38,+1,+1,+1,+1}
{28,67,53,50,51,61,+1,+1,+1,+1}
{51,87,44,88,31,94,+1,+1,+1,+1}
{69,78,82,94,30,67,+1,+1,+1,+1}
{58,72,49,89,87,76,+1,+1,+1,+1}
{86,74,32,62,85,39,+1,+1,+1,+1}
{48,68,46,32,66,82,+1,+1,+1,+1}
{61,68,77,45,47,21,+1,+1,+1,+1}
{82,74,96,72,65,45,+1,+1,+1,+1}
{66,70,71,42,34,29,+1,+1,+1,+1}
{60,45,93,95,91,94,+1,+1,+1,+1}
本帖最后由 hejoseph 于 2023-3-29 16:24 编辑
四面体 $ABCD$ 的体积是 $V$,$AB = a$,$AC = b$,$AD = c$,$CD = p$,$DB = q$,$BC = r$,设
\begin{align*}
P_1 &= (ap)^2(-a^2 + b^2 + c^2 - p^2 + q^2 + r^2) , \\
P_2 &= (bq)^2(a^2 - b^2 + c^2 + p^2 - q^2 + r^2) , \\
P_3 &= (cr)^2(a^2 + b^2 - c^2 + p^2 + q^2 - r^2) , \\
P &= (abr)^2 + (acq)^2 + (bcp)^2 + (pqr)^2 ,
\end{align*}
则
\[
V = \frac{1}{12}\sqrt{P_1 + P_2 + P_3 - P} 。
\]
如果 $P_1 + P_2 + P_3 > P$。设三边长是 $a$、$b$、$r$ 的三角形中边长为$r$所对的内角是 $\alpha_1$,三边长是 $a$、$c$、$q$ 的三角形中边长为 $q$ 所对的内角是 $\alpha_2$,三边长是 $b$、$c$、$p$ 的三角形中边长为 $p$ 所对的内角是 $\alpha_3$,$\theta = (\alpha_1 + \alpha_2 + \alpha_3)/2$,则 $0< \theta < 270^\circ$,$-90^\circ < \theta - \alpha_1 < 180^\circ$,$-90^\circ < \theta - \alpha_2 < 180^\circ$,$-90^\circ < \theta - \alpha_3 < 180^\circ$,并且
\[
P_1 + P_2 + P_3 - P = 16a^2b^2c^2\sin \theta \sin(\theta - \alpha_1) \sin(\theta - \alpha_2) \sin(\theta - \alpha_3) ,
\]
所以 $\sin \theta \sin(\theta - \alpha_1) \sin(\theta - \alpha_2) \sin(\theta - \alpha_3)$ 必须是正数。
首先 $\sin(\theta - \alpha_1)$、$\sin(\theta - \alpha_2)$、$\sin(\theta - \alpha_3)$ 中不能有两个为负,否则不妨设 $\sin(\theta - \alpha_1) < 0$,$\sin(\theta - \alpha_2) < 0$,则 $\theta - \alpha_1 < 0^\circ$,$\theta - \alpha_2 < 0^\circ$,这样就得到 $\alpha_3 < 0^\circ$,这是不可能的。
另外 $\sin \theta$ 也不能为负,否则 $\sin(\theta - \alpha_1)$、$\sin(\theta - \alpha_2)$、$\sin(\theta - \alpha_3)$ 中有且只有一项必须为负,不妨假设 $\sin(\theta - \alpha_1) < 0$。由 $\sin \theta < 0$ 得 $\alpha_1 + \alpha_2 + \alpha_3 > 360^\circ$;由 $\sin(\theta - \alpha_1) < 0$ 得到 $\alpha_2 + \alpha_3 < \alpha_1 < 180^\circ$,又得 $\alpha_1 + \alpha_2 + \alpha_3 < 360^\circ$,与 $\alpha_1 + \alpha_2 + \alpha_3 > 360^\circ$ 矛盾。
所以 $\sin \theta$、$\sin(\theta - \alpha_1)$、$\sin(\theta - \alpha_2)$、$\sin(\theta - \alpha_3)$ 必须全部为正,这样就得到 $\alpha_1 + \alpha_2 + \alpha_3 < 360^\circ$,$\alpha_1 + \alpha_2 > \alpha_3$,$\alpha_1 + \alpha_3 > \alpha_2$,$\alpha_2 + \alpha_3 > \alpha_1$,由面角能构成三面角的充要条件知点 $A$、$B$、$C$、$D$ 能构成四面体。 hejoseph 发表于 2023-3-29 16:16
四面体 $ABCD$ 的体积是 $V$,$AB = a$,$AC = b$,$AD = c$,$CD = p$,$DB = q$,$BC = r$,设
\begin{a ...
你的论证我不明白:你说四个正弦都必须正,但是体积表达式大于零的时候,有可能四个面都不构成三角形呀,这时候四个正弦也是正数吗?这个时候估计都没正弦值了,也许是虚数了,或者是大于1的正弦值了。 hejoseph 发表于 2023-3-29 16:16
四面体 $ABCD$ 的体积是 $V$,$AB = a$,$AC = b$,$AD = c$,$CD = p$,$DB = q$,$BC = r$,设
\begin{a ...
如果能构成三角形,那体积肯定大于零呀!
对于 $AB=6$,$AC=BC=7$,$AD=8$,$BD=CD=4$ 画了个四面体的展开图,其中 $A_1E$ 垂直于 $BC$,$A_2F$ 垂直于 $CD$,$A_3G$ 垂直于 $DB$,三直线 $A_1E$、$A_2F$、$A_3G$ 相交于同一点 $H$,这个点 $H$,这个点 $H$ 就是点 $A$ 在平面 $BCD$ 内的正射影。如果这个四面体存在,那么显然必须 $A_1E>HE$,$A_2F>HF$,$A_3G>HG$,但此时显然与这个要求不符,所以这样的四面体并不存在。
页:
[1]
2