王守恩
发表于 2023-7-23 18:10:38
谢谢 northwolves!谢谢宝贵的资料!
1个四面体的6条边与体积都是正整数,体积一定是3的倍数:0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,......
譬如:体积=3, a=21,b=32,c=47,A=58,B=76,C=56。
譬如:体积=3, a=32,b=33,c=35,A=76,B=70,C=44。
譬如:体积=6, a=2,b=4,c=4,A=7,B=6,C=5。(这是最小(6个数的和)的)
譬如:体积=205920, a=44,b=117,c=125,A=267,B=244,C=240。
说明:
把四面体看作一个平放在桌面上的三角形ABC(BC是水平线,A在BC上方),顶点P在ABC内部,
记6条棱BC=a,CA=b,AB=c,Pa=A,PB=B,PC=C,
图方便,我们可以约定a是最小的,第二小在A与b,其他位置就是唯一的了。
northwolves
发表于 2023-7-23 19:10:48
A272388 Longest side of Heronian tetrahedron.
117, 160, 203, 225, 234, 318, 319, 319, 320, 351, 406, 429, 450, 468, 468, 480, 585, 595, 595, 595, 609, 612, 636, 638, 638, 640, 671, 675, 680, 680, 697, 697, 702, 741, 780, 800, 812, 819, 858, 884, 884, 888, 900, 925, 935, 936, 936, 954, 957, 957, 960, 990, 990 (list; graph; refs; listen; history; edit; text; internal format)
OFFSET
1,1
COMMENTS
A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.
LINKS
Table of n, a(n) for n=1..53.
R. H. Buchholz, Perfect Pyramids, Bull. Austral. Math. Soc. 45, 353-368, 1992.
Susan H. Marshall and Alexander R. Perlis, Heronian Tetrahedra Are Lattice Tetrahedra, American Mathematical Monthly 120:2 (2013), 140-149.
Ivars Peterson, Perfect pyramids.
Eric Weisstein's World of Mathematics, Heronian Tetrahedron.
EXAMPLE
The following are examples of Heronian tetrahedra.
dAB, dAC, dBC, dCD, dBD, dAD, SABC,SABD,SACD,SBCD,Volume
117, 84,51,52,53,80,1890,1800,2016,1170,18144
160, 153, 25,39,56,120, 1872,2688,1404,420, 8064
203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520
225, 200, 65,119, 156, 87,6300,4914,2436,3570,35280
234, 168, 102, 104, 106, 160, 7560,7200,8064,4680,145152
318, 221, 203, 42,175, 221, 22260, 18564, 4620,2940,206976
319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880
319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856
320, 306, 50,78,112, 240, 7488,10752, 5616,1680,64512
351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888
where
dPQ is the distance between vertices P and Q and
SPQR is the area of triangle PQR.
MATHEMATICA
aMax=360(*WARNING:takes a long time*);
heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
cayley=1/24Sqrt[2Det[{
{0, 1, 1, 1, 1},
{1, 0, #1^2, #2^2, #6^2},
{1, #1^2, 0, #3^2, #5^2},
{1, #2^2, #3^2, 0, #4^2},
{1, #6^2, #5^2, #4^2, 0}
}]]&;
Do[
S1=heron;
If];
Do[
S2=heron;
If];
Do[
If];
S3=heron;
If];
S4=heron;
If];
V=cayley;
If];
If];
a//Sow(*{a, b, c, d, e, f, S1, S2, S3, S4, V}//Sow*);
, {d, Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling, Min]}];
, {e, a-b+1, b}, {f, a-e+1, b}];
, {a, 117, aMax}, {b, a/2//Ceiling, a}, {c, a-b+1, b}]//Reap//Last//Last
CROSSREFS
Cf. A120131, A120132, A120133.
KEYWORD
nonn
AUTHOR
Albert Lau, May 19 2016
EXTENSIONS
a(11)-a(53) from Giovanni Resta, May 20 2016
STATUS
approved
northwolves
发表于 2023-7-23 19:11:45
A126766 Minimum length of longest edge of a tetrahedron with integer edges and integer volume 3*n.
76, 7, 8, 16, 8, 16, 10, 7, 40, 11, 27, 12, 308, 13, 84, 9, 128, 17, 28, 16, 16, 16, 34, 12, 20, 17, 91, 12 (list; graph; refs; listen; history; edit; text; internal format)
OFFSET
1,1
COMMENTS
A tetrahedron with integer edges has an integer volume only when the volume is a multiple of 3. It is unknown whether such tetrahedra exist for every multiple of 3.
LINKS
Table of n, a(n) for n=1..28.
K. L. Dove and J. S. Sumner, Tetrahedra with Integer Edges and Integer Volume, Mathematics Magazine, Volume 65(2), April 1992, pp. 104-111.
KEYWORD
more,nonn
AUTHOR
William Rex Marshall, Feb 15 2007
STATUS
approved
王守恩
发表于 2023-7-23 20:38:52
24就可以有这些数了。
{{0, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42, 48, 54, 60, 63, 66, 72, 75, 78, 84, 90, 96, 99, 105, 108, 114, 120, 126, 132, 135, 144, 147, 156, 162, 165, 168, 174, 180, 189, 192, 198, 204, 210, 216,
225, 231, 240, 243, 252, 264, 288, 300, 315, 330, 336, 342, 360, 378, 384, 405, 408, 420, 432, 480, 495, 504, 528, 546, 552, 576, 600, 624, 648, 672, 720, 768, 792, 798, 819, 882, 960, 966, 1344}}
Table[Select[Union@Flatten@Table[Sqrt[(a^2 A^2 (b^2 + B^2 + c^2 + C^2) +b^2 B^2 (a^2 + A^2 + c^2 + C^2) + c^2 C^2 (a^2 + A^2 + b^2 + B^2) - (a^2 A^2 (a^2 + A^2) +
b^2 B^2 (b^2 + B^2) + c^2 C^2 (c^2 + C^2) + a^2 (b^2 c^2 + B^2 C^2) + A^2 (b^2 C^2 + B^2 c^2)))/144],{a,2,k},{b,a,k},{c,a,k},{A,a,k},{B,a,k},{C,a,k}],IntegerQ[#]&],{k,24,24}]
王守恩
发表于 2023-7-24 12:25:32
A126766 Minimum length of longest edge of a tetrahedron with integer edges and integer volume 3*n.
76, 7, 8, 16, 8, 16, 10, 7, 40, 11, 27, 12, 308, 13, 84, 9, 128, 17, 28, 16, 16, 16, 34, 12, 20, 17, 91, 12 (list; graph; refs; listen; history; edit; text; internal format)
体积=3*00=00, a=2,b=3,c=4,A=2,B=4,C=4。 最长边=4
体积=3*01=03, a=21,b=32,c=47,A=58,B=76,C=56。最长边=76
体积=3*02=06, a=2,b=4,c=4,A=7,B=6,C=5。 最长边=7
体积=3*03=09, a=3,b=6,c=6,A=4,B=7,C=8。 最长边=8
体积=3*04=12, a=2,b=5,c=6,A=16,B=14,C=13。 最长边=16
体积=3*05=15, a=4,b=4,c=5,A=7,B=8,C=6。 最长边=8
体积=3*06=18, a=7,b=9,c=11,A=7,B=16,C=11。 最长边=16
体积=3*07=21, a=4,b=6,c=8,A=8,B=10,C=7。 最长边=10
体积=3*08=24, a=4,b=7,c=7,A=6,B=7,C=7。 最长边=7
体积=3*09=27, a=4,b=4,c=9,A=8,B=19,C=14。 最长边=19?
体积=3*10=30, a=4,b=6,c=7,A=11,B=8,C=8。 最长边=11
体积=3*11=33, a=3,b=4,c=10,A=16,B=4,C=10。最长边=16?
体积=3*12=36, a=4,b=6,c=7,A=12,B=10,C=12。最长边=12
体积=3*13=39, ? 最长边=308?
王守恩
发表于 2023-7-30 15:23:46
体积=3*13=39, ? 最长边=308?
无解了吗?
王守恩
发表于 2023-8-4 20:32:51
已知四面体的5条边是5个连续正整数,第6条边的取值范围。
5条边=2——06, 第6条边=2——8,
5条边=3——07, 第6条边=2——10,
5条边=4——08, 第6条边=2——12,
5条边=5——09, 第6条边=2——14,
5条边=6——10, 第6条边=2——16,
5条边=7——11, 第6条边=2——17,
5条边=8——12, 第6条边=2——19,
5条边=9——13, 第6条边=2——21,
得到一串数:{8, 10, 12, 14, 16, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 55, 57, 59, 61}
求证:\(\D\lfloor\sqrt{3}(n-1)\rfloor≥a(n)≥\lfloor\sqrt{3}n-1\rfloor\)
A022838好像是这串数,可惜没有这样的条文。
王守恩
发表于 2023-8-7 08:48:11
本帖最后由 王守恩 于 2023-8-7 18:37 编辑
1个四面体的6条边与体积都是正整数,
体积可以是3的倍数: {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, ...
居然还没有人能证明。有兴趣的朋友!找1个不是3的倍数的数来?!
再,譬如:体积=39,连具体的6个数还找不出一组来?!
科技发达的今天,这还算问题吗?!
是我们自己太封闭了?!
尊敬的nyy网友!四面体的6条边是正整数,体积=39,你能来一组解吗?谢谢!
northwolves
发表于 2023-8-7 09:15:53
王守恩 发表于 2023-8-7 08:48
1个四面体的6条边与体积都是正整数,
体积可以是3的倍数: {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,...
20楼的链接文献里有证明过程
northwolves
发表于 2023-8-7 09:17:26
体积=39,连具体的6个数还找不出一组来?
-------------------
这个计算量应该也不是很大,王老师你自己试试