计算圆周率的反正切级数(马青类公式)
Arctan relations for Pihttps://www.jjj.de/arctan/arctanpage.html
In a relation
M1*arctan(1/A1)+M2*arctan(1/A2)+...+Mj*arctan(1/Aj) == k*Pi/4
the left hand side is abbreviated as
M1+M2+...+Mj
The term of least convergence is listed first. Relations of n arctan terms are in one file. The files are ordered according to the arguments, the "best" relation is first. When the first arguments coincide the next is used for ordering. An example (6-term relations):
+322 +76 +139 +156 +132 +44 == 1 * Pi/4
+122 +61 +115 +29 +22 +44 == 1 * Pi/4
+100 +127 +71 -15 +66 +44 == 1 * Pi/4
+337 -193 +151 +305 -122 -83 == 1 * Pi/4
+183 +32 +95 +44 -166 -51 == 1 * Pi/4
+183 +32 +95 -7 -122 +51 == 1 * Pi/4
+29 +269 +154 +122 -186 +71 == 1 * Pi/4
Each relation is followed by a list of primes of the form 4*k+1. These are obtained by factoring Ai^2+1 for each (inverse) argument Ai. An example (a 5-term relation):
+88 +39 +100 -32 -56 == 1 * Pi/4
{5, 13, 73, 101}
We have
192^2+1 == 36865 == 5 73 101
239^2+1 == 57122 == 2 13 13 13 13
515^2+1 == 265226 == 2 13 101 101
1068^2+1 == 1140625 == 5 5 5 5 5 5 73
173932^2+1 == 30252340625 == 5 5 5 5 5 13 73 101 101 +166553022292 +222363417479 -134276698825 +168215423310 +75023059326 +136852193784 +217055842606 +103141369176 +28713480349 +221440571852 +184010343804 -130014434756 +30039704433 -125016355012 -268445832064 +80047317279 +229618316915 +30192504858 +18293883503 -44291036474 +29376832104 -139440534748 -59815251609 +62403552219 +59060238669 -169497968425 -238261971358 == 1 * Pi/4 {5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 109, 113, 137, 149, 173, 181, 229, 241, 257, 269, 277, 281, 317, 541, 601}
这个太极端了!
https://www.jjj.de/arctan/arctan-27term.txt
2-term relations:
+4 -1 == 1 * Pi/4
{13}
+2 +1 == 1 * Pi/4
{5}
+1 +1 == 1 * Pi/4
{5}
3-term relations:
+12 +8 -5 == 1 * Pi/4
{5, 13}
+8 -1 -4 == 1 * Pi/4
{13, 101}
+5 +4 +2 == 1 * Pi/4
{5, 37}
+5 +4 +2 == 1 * Pi/4
{5, 281}
+5 +2 +2 == 1 * Pi/4
{5, 157}
4-term relations:
+44 +7 -12 +24 == 1 * Pi/4
{5, 13, 61}
+20 +24 +12 -5 == 1 * Pi/4
{5, 13, 37}
+24 +20 -5 +12 == 1 * Pi/4
{5, 13, 281}
+12 +20 +7 +24 == 1 * Pi/4
{5, 13, 17}
+24 -4 +7 -12 == 1 * Pi/4
{5, 13, 421}
5-term relations:
+88 +39 +100 -32 -56 == 1 * Pi/4
{5, 13, 73, 101}
+88 +51 +32 +44 +68 == 1 * Pi/4
{5, 13, 61, 97}
+88 +7 -44 +32 +24 == 1 * Pi/4
{5, 13, 61, 101}
+44 +95 -12 +24 -44 == 1 * Pi/4
{5, 13, 61, 457}
+44 +44 +7 -12 +24 == 1 * Pi/4
{5, 13, 61, 229}
6-term relations:
+322 +76 +139 +156 +132 +44 == 1 * Pi/4
{5, 13, 61, 89, 197}
+122 +61 +115 +29 +22 +44 == 1 * Pi/4
{5, 17, 41, 73, 181}
+100 +127 +71 -15 +66 +44 == 1 * Pi/4
{5, 13, 17, 41, 73}
+337 -193 +151 +305 -122 -83 == 1 * Pi/4
{5, 13, 17, 29, 97}
+183 +32 +95 +44 -166 -51 == 1 * Pi/4
{5, 13, 17, 61, 89}
7-term relations:
+1587 +295 ... -708 == 1 * Pi/4
{5, 13, 17, 29, 97, 433}
+327 +481 ... +398 == 1 * Pi/4
{5, 13, 17, 41, 97, 349}
+1074 +657 ... +398 == 1 * Pi/4
{5, 13, 17, 61, 89, 97}
+1106 -330 ... +398 == 1 * Pi/4
{5, 13, 17, 29, 53, 97}
+481 +295 ... -227 == 1 * Pi/4
{5, 13, 17, 29, 97, 409}
8-term relations:
+2192 +2097 ... -708 == 1 * Pi/4
{5, 13, 29, 37, 61, 97, 337}
+1484 +708 ... -398 == 1 * Pi/4
{5, 13, 17, 29, 53, 269, 373}
+1882 +1106 ... +398 == 1 * Pi/4
{5, 13, 17, 41, 53, 97, 373}
+2805 +1257 ... +1074 == 1 * Pi/4
{5, 13, 17, 61, 89, 97, 233}
+2363 +1218 ... +481 == 1 * Pi/4
{5, 13, 17, 29, 37, 97, 449}
9-term relations:
+3286 +9852 ... +776 == 1 * Pi/4
{5, 13, 17, 29, 41, 53, 97, 269}
+6832 +4062 ... -1882 == 1 * Pi/4
{5, 13, 17, 29, 53, 97, 269, 433}
+9012 +6896 ... +4062 == 1 * Pi/4
{5, 13, 17, 29, 37, 97, 433, 449}
+9852 +5546 ... +8300 == 1 * Pi/4
{5, 13, 17, 29, 53, 109, 157, 269}
+5280 +4838 ... -1882 == 1 * Pi/4
{5, 13, 17, 29, 53, 97, 269, 281}
10-term relations:
+1106 -30569 ... +23407 == -1 * Pi/4
{5, 13, 17, 41, 53, 73, 97, 101, 157}
+13301 +19560 ... -5280 == 1 * Pi/4
{5, 13, 17, 37, 41, 53, 73, 101, 157}
+27764 +18979 ... +3581 == 1 * Pi/4
{5, 13, 17, 29, 53, 109, 233, 457, 569}
+50539 +1555 ... +25433 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97}
+24891 +26988 ... +776 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 89, 109, 233}
11-term relations:
+36462 +135908 ... -43938 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101}
+52094 +29861 ... +43938 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 241}
+37616 +29861 ... +6056 == 1 * Pi/4
{5, 13, 17, 29, 41, 53, 61, 157, 197, 269}
+59324 +46743 ... +27764 == 1 * Pi/4
{5, 13, 17, 29, 53, 109, 137, 269, 457, 593}
+102486 +46743 ... -43162 == 1 * Pi/4
{5, 13, 17, 29, 53, 109, 137, 233, 269, 457}
12-term relations:
+893758 +655711 ... -432616 == 2 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 197}
+619249 -211951 ... -216308 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 281}
+446879 +172370 ... -216308 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101}
+483341 -36462 ... -216308 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 181}
+290735 -68439 ... -59551 == 1 * Pi/4
{5, 13, 17, 29, 37, 61, 101, 109, 181, 193, 337}
13-term relations:
+1126917 +1337518 ... -216308 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 181, 281}
+1241486 +292729 ... -407298 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 281, 733}
+1860735 -114569 ... -623606 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 241, 281}
+1241486 +831200 ... -216308 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 281}
+286458 -1377426 ... +519636 == -1 * Pi/4
{5, 13, 17, 41, 53, 97, 101, 109, 149, 193, 277, 601}
14-term relations:
+446879 +5624457 ... +483341 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 181, 269, 457}
+1126917 -7198253 ... -3591352 == -1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 181, 281, 457}
+2701787 +1721624 ... +224134 == 1 * Pi/4
{5, 13, 17, 41, 53, 61, 89, 109, 113, 137, 241, 269, 457}
+1821154 +2369262 ... +4799 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 61, 113, 137, 149, 229, 449, 557}
+3801953 -1532570 ... +1337518 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 73, 89, 97, 101, 181, 281}
15-term relations:
+5034126 +1546003 ... +1337518 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 181, 337, 389}
+5345097 +6293190 ... +4944419 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 61, 89, 97, 101, 109, 233, 277, 557}
+980346 +6580129 ... +2603331 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 181, 389, 457}
+5752395 +1808080 ... -2815282 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 109, 389, 541}
+6371644 +1188831 ... +2603331 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 181, 389, 461}
16-term relations:
+14215326 +6973645 ... +8735690 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 101, 109, 233, 241, 389, 569}
+17294544 +27205340 ... -13226263 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 89, 97, 101, 109, 193, 229, 233, 557, 757}
+12552413 +33848374 ... +11582317 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 109, 149, 461, 617}
+8897246 +16223408 ... +6195674 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 73, 97, 101, 113, 229, 409, 433, 709}
+6453528 +11661213 ... +6115274 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 73, 97, 101, 113, 197, 229, 409, 433}
17-term relations:
+12872838 +27205340 ... +35839320 == 1 * Pi/4
{5, 13, 17, 29, 37, 53, 89, 97, 101, 109, 113, 197, 229, 233, 557, 757}
+73667294 -19737150 ... +73757780 == 1 * Pi/4
{5, 13, 17, 29, 41, 53, 61, 73, 109, 113, 137, 149, 157, 181, 409, 421}
+39580760 +16166691 ... -32961758 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 73, 97, 109, 113, 149, 157, 193, 229, 449, 557}
+20700907 -14295479 ... -53662765 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 73, 97, 109, 113, 149, 157, 229, 293, 449, 557}
+60126052 -4378601 ... -60592901 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 73, 97, 109, 113, 149, 157, 193, 229, 457, 557}
18-term relations:
+2859494 -41068896 ... -89623108 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 73, 97, 109, 113, 149, 157, 181, 193, 337, 409}
+79635304 -41619921 ... -82571160 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 109, 113, 149, 157, 193, 293, 449}
+128948755 +46365822 ... +54020630 == 1 * Pi/4
{5, 13, 17, 29, 41, 53, 61, 73, 109, 113, 137, 149, 157, 181, 193, 409, 421}
+24101193 +173878369 ... +116515842 == 2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 97, 101, 109, 181, 193, 197, 277, 337, 409}
+61004459 +33797796 ... +32726322 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 97, 109, 137, 157, 197, 229, 241, 277, 337, 409}
19-term relations:
+270619381 -138919506 ... +146407224 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 73, 89, 97, 109, 113, 149, 157, 193, 257, 293, 449}
+59529729 +79674619 ... +74693424 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 101, 113, 137, 157, 181, 233, 313, 461}
+81426443 +121593960 ... +10896101 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 113, 157, 173, 181, 197, 233, 269, 277}
+110095319 -107544826 ... -46539715 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 113, 157, 173, 193, 241, 257, 613}
+50408000 +56219270 ... +92203391 == 1 * Pi/4
{5, 13, 17, 37, 41, 53, 61, 73, 89, 113, 137, 157, 181, 197, 269, 277, 293, 373}
20-term relations:
+807092487 +479094776 ... +214188292 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 113, 149, 157, 193, 277, 313, 421, 509}
+87218705 +110260180 ... -54384134 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 113, 149, 193, 257, 281, 349, 613}
+128838741 -48554212 ... -703647950 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 137, 157, 173, 193, 257, 277, 337, 709}
+476582424 +330885384 ... +1290385324 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 109, 149, 173, 257, 269, 313, 457, 617}
+209679377 +832386402 ... -120586758 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 113, 173, 193, 257, 281, 349, 613}
21-term relations:
+598245178 -115804626 ... -1521437626 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 149, 173, 233, 269, 281, 313, 349}
+1636945012 -2733315404 ... +1772787486 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 149, 173, 233, 257, 269, 313, 349}
+22036970 -2300654420 ... -430112898 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 137, 157, 173, 233, 269, 281, 349, 409}
+2277397987 -2588087820 ... +883258705 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 137, 149, 173, 257, 293, 449, 457}
+30168848 -517851720 ... -1055052705 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 137, 149, 173, 233, 257, 457, 521}
22-term relations:
+2242198001 +1907212074 ... -2418616720 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 137, 149, 173, 181, 257, 449, 457, 617}
+1687553954 +2140036840 ... +2839615695 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 173, 257, 313, 449, 457}
+4294694239 +8975120280 ... -4584031221 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 149, 157, 193, 241, 269, 313, 449, 457}
+2255035212 -1719738754 ... -9538773149 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 137, 149, 173, 181, 257, 269, 457, 617}
+8852363052 -6310889300 ... -4662202233 == -2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 137, 149, 173, 181, 257, 457, 617, 757}
23-term relations:
+5667127453 +15129381 ... +8164579419 == 2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 97, 109, 113, 157, 173, 193, 197, 233, 241, 269, 313, 449, 521}
+38687548853 -12882562179 ... -28435786819 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 97, 109, 113, 137, 157, 193, 197, 233, 241, 269, 313, 409, 449}
+2245366820 +10430675125 ... +8433093551 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 97, 109, 113, 137, 157, 181, 193, 233, 241, 269, 281, 313, 449}
+10000836358 +16644416156 ... -10655494736 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 97, 101, 109, 113, 137, 157, 173, 197, 233, 269, 313, 397, 521}
+16212175144 -4443575442 ... -3747481728 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 97, 109, 113, 157, 173, 193, 197, 233, 241, 269, 313, 433, 449}
24-term relations:
+25755712641 +31142028402 ... +32555698322 == 2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 149, 173, 181, 193, 229, 257, 277, 281, 313, 433, 673}
+53112874273 +8412707264 ... -21214686561 == 3 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 149, 173, 193, 197, 257, 269, 293, 313, 397, 509}
+42395129953 +53149822100 ... +23815390395 == 3 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 173, 181, 193, 229, 277, 337, 353, 409}
+6169334688 +7410876424 ... -682488502 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 137, 173, 181, 193, 229, 277, 313, 337, 353, 421}
+15758305932 +6933500078 ... -18697733393 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 149, 157, 173, 233, 241, 269, 293, 313, 397, 677}
25-term relations:
+167174919693 +28100366064 ... +23981185267 == 4 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 181, 193, 229, 241, 277, 293, 577, 601}
+63104267593 -49239532881 ... -26715804188 == -2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 137, 149, 173, 181, 193, 229, 241, 277, 293, 601, 617}
+40267708165 +15351299076 ... +48204000632 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 157, 181, 229, 233, 241, 269, 313, 353, 577}
+28523690053 +7718539660 ... -48204000632 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 157, 181, 197, 229, 233, 241, 269, 313, 353, 577}
+51859431398 -30366643323 ... -4338698676 == -1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 173, 193, 229, 257, 277, 317, 337, 601}
26-term relations:
+152014292229 +60325885083 ... -103240793335 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 173, 181, 193, 197, 229, 257, 269, 277, 577, 653}
+246005956384 -112112075621 ... +48204000632 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 157, 181, 197, 229, 233, 241, 269, 313, 353, 577}
+190512971108 -182115180498 ... -115480230498 == -3 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 173, 181, 193, 229, 241, 277, 293, 577, 601}
+242772722145 -239339538150 ... -21670383406 == -2 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 173, 181, 193, 197, 229, 257, 277, 293, 577}
+38763569175 +755595651182 ... -247705754204 == 8 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 173, 181, 193, 229, 257, 277, 293, 557, 577}
27-term relations:
+166553022292 +222363417479 ... -238261971358 == 1 * Pi/4
{5, 13, 17, 29, 37, 41, 53, 61, 89, 97, 101, 109, 113, 137, 149, 173, 181, 229, 241, 257, 269, 277, 281, 317, 541, 601}
https://www.jjj.de/arctan/best-arctan-relations.txt 不错不错 本帖最后由 nyy 于 2023-9-8 14:36 编辑
PAIRS INCORPORATING 5 DISTINCT COTANGENT VALUES
Compound measure = 2.38268(includes 5 DCVs)
1.58604STØRMER (1896)
44+7-12+24
Eliminated:{A}
1.81316HCL (04Jun95)
3=44-23+8-16
写成LaTeX,如下:
\[\frac{Pi}{4}=44\arctan{(\frac{1}{57})}+7\arctan{(\frac{1}{239})}-12\arctan{(\frac{1}{682})}+24\arctan{(\frac{1}{12943})}
\]
\[\frac{3Pi}{4}=44\arctan{\frac{1}{18}}-23\arctan{\frac{1}{239}}+8\arctan{\frac{1}{682}}-16\arctan{\frac{1}{12943}}\]
Top of frame
http://www.machination.eclipse.co.uk/FSChecking.html https://www.jjj.de/arctan/arndt-arctan-2006.pdf.gz
如何发现这个反正切级数的呢?这个文章里有说明! 本帖最后由 nyy 于 2023-9-8 11:38 编辑
+36462 +135908 +274509 -39581
+178477 -114569 -146571 +61914
-69044 -89431 -43938 == 1 * Pi/4
代表着:
\[
+36462\arctan{\frac{1}{390112}}+135908\arctan{\frac{1}{485298}}\\
+274509\arctan{\frac{1}{683982}}-39581\arctan{\frac{1}{1984933}}\\
+178477\arctan{\frac{1}{2478328}}-114569\arctan{\frac{1}{3449051}}\\
-146571\arctan{\frac{1}{18975991}}+61914\arctan{\frac{1}{22709274}}\\
-69044\arctan{\frac{1}{24208144}}-89431\arctan{\frac{1}{201229582}}\\
-43938\arctan{\frac{1}{2189376182}}==1*\frac{Pi}{4}
\]
我用LaTeX重新表达一下,这下更容易理解与明白
本帖最后由 nyy 于 2023-9-8 14:52 编辑
:s/\[\(\d\+\)\]/\\arctan{(\\frac{1}{\1})}/gec
这个是vim中替换的代码,我还是忍不住要把集中的几个搞成LaTeX
+322 +76 +139 +156 +132 +44 == 1 * Pi/4
+122 +61 +115 +29 +22 +44 == 1 * Pi/4
+100 +127 +71 -15 +66 +44 == 1 * Pi/4
+337 -193 +151 +305 -122 -83 == 1 * Pi/4
+183 +32 +95 +44 -166 -51 == 1 * Pi/4
+183 +32 +95 -7 -122 +51 == 1 * Pi/4
+29 +269 +154 +122 -186 +71 == 1 * Pi/4
这7行的LaTeX,分别表示
\[+322\arctan{(\frac{1}{577})}+76\arctan{(\frac{1}{682})}+139\arctan{(\frac{1}{1393})}+156\arctan{(\frac{1}{12943})}+132\arctan{(\frac{1}{32807})}+44\arctan{(\frac{1}{1049433})}=\frac{\pi}{4}\]
\[+122\arctan{(\frac{1}{319})}+61\arctan{(\frac{1}{378})}+115\arctan{(\frac{1}{557})}+29\arctan{(\frac{1}{1068})}+22\arctan{(\frac{1}{3458})}+44\arctan{(\frac{1}{27493})}=\frac{\pi}{4}\]
\[+100\arctan{(\frac{1}{319})}+127\arctan{(\frac{1}{378})}+71\arctan{(\frac{1}{557})}-15\arctan{(\frac{1}{1068})}+66\arctan{(\frac{1}{2943})}+44\arctan{(\frac{1}{478707})}=\frac{\pi}{4}\]
\[+337\arctan{(\frac{1}{307})}-193\arctan{(\frac{1}{463})}+151\arctan{(\frac{1}{4193})}+305\arctan{(\frac{1}{4246})}-122\arctan{(\frac{1}{39307})}-83\arctan{(\frac{1}{390112})}=\frac{\pi}{4}\]
\[+183\arctan{(\frac{1}{268})}+32\arctan{(\frac{1}{682})}+95\arctan{(\frac{1}{1568})}+44\arctan{(\frac{1}{4662})}-166\arctan{(\frac{1}{12943})}-51\arctan{(\frac{1}{32807})}=\frac{\pi}{4}\]
\[+183\arctan{(\frac{1}{268})}+32\arctan{(\frac{1}{682})}+95\arctan{(\frac{1}{1483})}-7\arctan{(\frac{1}{9932})}-122\arctan{(\frac{1}{12943})}+51\arctan{(\frac{1}{29718})}=\frac{\pi}{4}\]
\[+29\arctan{(\frac{1}{268})}+269\arctan{(\frac{1}{463})}+154\arctan{(\frac{1}{2059})}+122\arctan{(\frac{1}{2943})}-186\arctan{(\frac{1}{9193})}+71\arctan{(\frac{1}{390112})}=\frac{\pi}{4}\]
表示
+88+39+100-32-56==1*Pi/4
\[+88\arctan{(\frac{1}{192})}+39\arctan{(\frac{1}{239})}+100\arctan{(\frac{1}{515})}-32\arctan{(\frac{1}{1068})}-56\arctan{(\frac{1}{173932})}=\frac{\pi}{4}\]
nyy 发表于 2023-9-7 14:37
+166553022292 +222363417479 -134276698825 +168215423310
把二楼公式LaTeX化,如下:
\[
+166553022292\arctan{(\frac{1}{970522492753})}\\
+222363417479\arctan{(\frac{1}{989193552378})}\\
-134276698825\arctan{(\frac{1}{1096452832428})}\\
+168215423310\arctan{(\frac{1}{1280283860113})}\\
+75023059326\arctan{(\frac{1}{1341087111018})}\\
+136852193784\arctan{(\frac{1}{1689015353762})}\\
+217055842606\arctan{(\frac{1}{1822081215762})}\\
+103141369176\arctan{(\frac{1}{2184607268277})}\\
+28713480349\arctan{(\frac{1}{2278678014557})}\\
+221440571852\arctan{(\frac{1}{2635662131192})}\\
+184010343804\arctan{(\frac{1}{3165256360443})}\\
-130014434756\arctan{(\frac{1}{3385630462882})}\\
+30039704433\arctan{(\frac{1}{4426171412662})}\\
-125016355012\arctan{(\frac{1}{4963640229982})}\\
-268445832064\arctan{(\frac{1}{4972090102688})}\\
+80047317279\arctan{(\frac{1}{6306451059345})}\\
+229618316915\arctan{(\frac{1}{10221155603807})}\\
+30192504858\arctan{(\frac{1}{10305371319950})}\\
+18293883503\arctan{(\frac{1}{13688849577057})}\\
-44291036474\arctan{(\frac{1}{14483848717682})}\\
+29376832104\arctan{(\frac{1}{24632166555862})}\\
-139440534748\arctan{(\frac{1}{39537374317540})}\\
-59815251609\arctan{(\frac{1}{69971515635443})}\\
+62403552219\arctan{(\frac{1}{104225908824307})}\\
+59060238669\arctan{(\frac{1}{106851921608307})}\\
-169497968425\arctan{(\frac{1}{169838669284032})}\\
-238261971358\arctan{(\frac{1}{452493528674723})}\\
=\frac{\pi}{4}
\]
https://arxiv.org/pdf/2312.05413.pdf
这儿也有马青公式
页:
[1]
2