素阶乘猜想:p = P# - q
素阶乘猜想:对于大于5的素数p,存在素数P,q使得p = P# - q其中P#为素数阶乘,P≥5,q>5
2024-03-23 13:49:22
7= 5# - {...}
11= 5# - {...} = 7# - {...}
13= 5# - {...} = 7# - {...} = 11# - {...}
17= 5# - {...} = 7# - {...} = 11# - {...} = 13# - {...}
19= 5# - {...} = 7# - {...} = 13# - {...}
23= 5# - {...} = 11# - {...} = 19# - {...}
29= 7# - {...} = 11# - {...} = 17# - {...}
31= 7# - {...}
37= 7# - {...} = 11# - {...} = 19# - {...}
41= 11# - {...} = 13# - {...} = 19# - {...} = 29# - {...}
43= 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...}
47= 7# - {...} = 13# - {...} = 17# - {...} = 19# - {...} = 41# - {...}
53= 7# - {...} = 17# - {...} = 19# - {...} = 41# - {...}
59= 7# - {...} = 11# - {...} = 17# - {...} = 19# - {...} = 37# - {...}
61= 7# - {...} = 17# - {...} = 23# - {...}
67= 11# - {...} = 19# - {...} = 29# - {...} = 47# - {...}
71= 7# - {...} = 11# - {...} = 13# - {...} = 41# - {...}
73= 7# - {...} = 11# - {...} = 29# - {...} = 31# - {...} = 53# - {...}
79= 7# - {...} = 19# - {...} = 23# - {...} = 31# - {...}
83= 7# - {...} = 13# - {...} = 31# - {...} = 79# - {...}
89= 11# - {...} = 31# - {...} = 41# - {...} = 43# - {...} = 53# - {...} = 61# - {...} = 83# - {...}
97= 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...} = 31# - {...} = 47# - {...} = 73# - {...} = 89# - {...}
101= 7# - {...} = 23# - {...} = 29# - {...} = 67# - {...} = 79# - {...} = 89# - {...}
103= 7# - {...} = 11# - {...} = 13# - {...} = 41# - {...} = 89# - {...}
107= 7# - {...} = 11# - {...} = 17# - {...} = 31# - {...} = 37# - {...} = 59# - {...} = 67# - {...}
109= 7# - {...} = 13# - {...} = 17# - {...} = 59# - {...}
113= 7# - {...} = 13# - {...} = 23# - {...} = 67# - {...} = 103# - {...}
127= 7# - {...} = 17# - {...} = 19# - {...} = 23# - {...} = 31# - {...} = 53# - {...} = 67# - {...} = 71# - {...} = 79# - {...}
131= 7# - {...} = 11# - {...} = 17# - {...} = 41# - {...} = 101# - {...}
137= 7# - {...} = 23# - {...} = 41# - {...} = 53# - {...} = 79# - {...} = 103# - {...}
139= 7# - {...} = 19# - {...} = 37# - {...} = 53# - {...} = 101# - {...}
149= 7# - {...} = 11# - {...} = 13# - {...} = 17# - {...} = 29# - {...} = 31# - {...} = 43# - {...} = 89# - {...} = 101# - {...}
151= 7# - {...} = 13# - {...} = 29# - {...} = 37# - {...} = 47# - {...} = 107# - {...} = 149# - {...}
157= 7# - {...} = 11# - {...} = 13# - {...} = 19# - {...}
163= 7# - {...} = 13# - {...} = 37# - {...} = 59# - {...} = 67# - {...}
167= 7# - {...} = 11# - {...} = 13# - {...} = 43# - {...} = 47# - {...} = 59# - {...} = 79# - {...} = 101# - {...}
173= 7# - {...} = 11# - {...} = 29# - {...} = 31# - {...} = 157# - {...}
179= 7# - {...} = 11# - {...} = 13# - {...} = 17# - {...} = 19# - {...} = 29# - {...} = 71# - {...} = 131# - {...}
181= 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...} = 41# - {...} = 73# - {...}
191= 7# - {...} = 17# - {...} = 53# - {...} = 59# - {...} = 73# - {...} = 79# - {...} = 173# - {...}
193= 7# - {...} = 13# - {...} = 29# - {...} = 41# - {...} = 53# - {...}
197= 7# - {...} = 11# - {...} = 13# - {...} = 23# - {...} = 31# - {...} = 41# - {...} = 83# - {...} = 107# - {...} = 151# - {...}
199= 7# - {...} = 11# - {...} = 17# - {...} = 23# - {...} = 67# - {...} = 71# - {...}
211= 11# - {...} = 13# - {...} = 17# - {...} = 31# - {...} = 107# - {...}
223= 11# - {...} = 17# - {...} = 61# - {...} = 127# - {...} = 131# - {...} = 179# - {...} = 181# - {...}
227= 11# - {...} = 13# - {...} = 29# - {...} = 31# - {...} = 41# - {...} = 211# - {...}
229= 11# - {...} = 19# - {...} = 43# - {...} = 53# - {...}
233= 67# - {...} = 149# - {...} = 167# - {...}
239= 17# - {...} = 19# - {...} = 23# - {...} = 37# - {...} = 41# - {...} = 71# - {...} = 79# - {...} = 101# - {...} = 163# - {...}
241= 11# - {...} = 13# - {...} = 19# - {...} = 29# - {...} = 61# - {...} = 71# - {...}
251= 31# - {...} = 41# - {...} = 79# - {...} = 97# - {...} = 113# - {...}
257= 11# - {...} = 17# - {...} = 19# - {...} = 29# - {...} = 31# - {...} = 37# - {...} = 73# - {...} = 97# - {...} = 113# - {...} = 127# - {...} = 167# - {...} = 229# - {...}
263= 17# - {...} = 37# - {...} = 43# - {...} = 61# - {...} = 71# - {...} = 83# - {...} = 107# - {...} = 109# - {...}
269= 13# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 61# - {...}
271= 11# - {...} = 13# - {...} = 31# - {...} = 59# - {...} = 79# - {...} = 89# - {...}
277= 13# - {...} = 17# - {...} = 29# - {...} = 47# - {...} = 59# - {...} = 89# - {...} = 113# - {...}
281= 11# - {...} = 19# - {...} = 37# - {...} = 43# - {...} = 67# - {...} = 113# - {...} = 139# - {...}
283= 11# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 37# - {...} = 107# - {...}
293= 11# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 43# - {...} = 53# - {...} = 103# - {...} = 191# - {...} = 197# - {...}
307= 11# - {...} = 13# - {...} = 17# - {...} = 29# - {...} = 37# - {...} = 61# - {...} = 233# - {...} = 263# - {...}
311= 11# - {...} = 17# - {...} = 23# - {...} = 37# - {...} = 67# - {...} = 97# - {...} = 223# - {...}
313= 11# - {...} = 13# - {...} = 19# - {...} = 29# - {...} = 41# - {...} = 47# - {...} = 61# - {...} = 67# - {...} = 73# - {...} = 109# - {...} = 223# - {...} = 229# - {...} = 23
9# - {...}
317= 11# - {...} = 181# - {...} = 257# - {...} = 277# - {...}
331= 11# - {...} = 17# - {...} = 19# - {...} = 47# - {...} = 53# - {...} = 67# - {...} = 79# - {...} = 311# - {...}
337= 11# - {...} = 29# - {...} = 53# - {...} = 97# - {...}
347= 13# - {...} = 29# - {...} = 43# - {...} = 71# - {...} = 211# - {...} = 251# - {...}
349= 19# - {...} = 37# - {...} = 41# - {...} = 43# - {...} = 223# - {...} = 239# - {...}
353= 17# - {...} = 23# - {...} = 29# - {...} = 31# - {...} = 41# - {...} = 73# - {...} = 83# - {...}
359= 11# - {...} = 13# - {...} = 19# - {...} = 113# - {...}
367= 13# - {...} = 19# - {...} = 29# - {...} = 47# - {...} = 181# - {...} = 263# - {...} = 337# - {...}
373= 17# - {...} = 23# - {...} = 37# - {...} = 61# - {...} = 67# - {...} = 109# - {...} = 127# - {...} = 139# - {...} = 149# - {...} = 227# - {...} = 367# - {...}
379= 11# - {...} = 43# - {...} = 61# - {...} = 109# - {...} = 313# - {...}
383= 17# - {...} = 41# - {...} = 73# - {...} = 79# - {...} = 109# - {...} = 179# - {...} = 239# - {...} = 263# - {...}
389= 13# - {...} = 17# - {...} = 23# - {...} = 47# - {...} = 67# - {...} = 79# - {...} = 103# - {...} = 137# - {...}
397= 11# - {...} = 13# - {...} = 31# - {...} = 53# - {...} = 61# - {...} = 73# - {...} = 109# - {...} = 131# - {...} = 367# - {...}
401= 13# - {...} = 19# - {...} = 23# - {...} = 41# - {...} = 197# - {...} = 337# - {...}
409= 11# - {...} = 17# - {...} = 47# - {...} = 59# - {...} = 163# - {...} = 173# - {...} = 337# - {...}
419= 13# - {...} = 29# - {...} = 41# - {...} = 61# - {...} = 67# - {...} = 131# - {...} = 139# - {...}
421= 11# - {...} = 17# - {...} = 29# - {...} = 73# - {...} = 89# - {...} = 139# - {...}
431= 11# - {...} = 13# - {...} = 17# - {...} = 29# - {...} = 37# - {...} = 43# - {...} = 59# - {...} = 79# - {...} = 109# - {...} = 163# - {...} = 281# - {...} = 337# - {...}
433= 11# - {...} = 17# - {...} = 173# - {...} = 431# - {...}
439= 11# - {...} = 19# - {...} = 23# - {...} = 31# - {...} = 37# - {...} = 113# - {...} = 163# - {...} = 167# - {...} = 229# - {...} = 419# - {...}
443= 11# - {...} = 13# - {...} = 17# - {...} = 29# - {...} = 83# - {...} = 131# - {...} = 163# - {...} = 233# - {...} = 353# - {...} = 367# - {...} = 397# - {...}
449= 11# - {...} = 13# - {...} = 17# - {...} = 31# - {...} = 37# - {...} = 103# - {...} = 137# - {...} = 197# - {...} = 331# - {...} = 349# - {...} = 401# - {...}
457= 13# - {...} = 19# - {...} = 41# - {...} = 47# - {...} = 109# - {...} = 199# - {...} = 349# - {...}
461= 13# - {...} = 17# - {...} = 31# - {...} = 47# - {...} = 59# - {...} = 101# - {...} = 311# - {...} = 313# - {...}
463= 11# - {...} = 13# - {...} = 17# - {...} = 47# - {...} = 61# - {...} = 101# - {...} = 151# - {...} = 199# - {...} = 281# - {...} = 367# - {...} = 419# - {...}
467= 29# - {...} = 37# - {...} = 43# - {...} = 109# - {...} = 271# - {...} = 373# - {...}
479= 11# - {...} = 17# - {...} = 19# - {...} = 37# - {...} = 53# - {...} = 59# - {...} = 157# - {...} = 233# - {...} = 283# - {...}
487= 11# - {...} = 19# - {...} = 71# - {...} = 163# - {...}
491= 19# - {...} = 41# - {...} = 101# - {...} = 113# - {...} = 149# - {...} = 157# - {...} = 239# - {...}
499= 11# - {...} = 13# - {...} = 19# - {...} = 103# - {...} = 139# - {...} = 157# - {...} = 163# - {...} = 359# - {...}
用时 0.25401 秒
其中7、11、13、17为满解,即可行解全部是有效解;且只有7、11、31少于3个解。 xbtianlang 发表于 2024-3-23 13:52
2024-03-23 13:49:22
7= 5# - {...}
11= 5# - {...} = 7# - {...}
一切皆有可能! p<10000的唯2解:
11 2 {5,7} p<10000的3个解组合:
13 3 {5,7,11}
19 3 {5,7,13}
23 3 {5,11,19}
29 3 {7,11,17}
37 3 {7,11,19}
61 3 {7,17,23}
233 3 {67,149,167}
3191 3 {13,211,2069}
8161 3 {61,373,3607} p<10000的4个解组合:
17 4 {5,7,11,13}
41 4 {11,13,19,29}
43 4 {7,11,19,23}
53 4 {7,17,19,41}
67 4 {11,19,29,47}
71 4 {7,11,13,41}
79 4 {7,19,23,31}
83 4 {7,13,31,79}
109 4 {7,13,17,59}
157 4 {7,11,13,19}
229 4 {11,19,43,53}
317 4 {11,181,257,277}
337 4 {11,29,53,97}
359 4 {11,13,19,113}
433 4 {11,17,173,431}
487 4 {11,19,71,163}
1091 4 {37,83,137,619}
2113 4 {11,13,89,1321}
2129 4 {11,13,37,1439}
2677 4 {23,53,137,617}
3769 4 {13,19,97,383}
4099 4 {13,67,439,661}
7001 4 {13,769,1741,3271}
8353 4 {19,43,59,101} p=36263 ,5个解:{3853, 5197, 5209, 6247, 6397} p<10000 唯一解:
7 1 {5}
31 1 {7} northwolves 发表于 2024-3-24 13:58
p=36263 ,5个解:{3853, 5197, 5209, 6247, 6397}
2024-03-24 16:37:54
... ...
-3846-36241
-3847-36251
36263 {3853, 5197, 5209, 6247, 6397, 6827, 11681}
用时 23836.19552 秒
检验到36251#,用时很长。 本帖最后由 northwolves 于 2024-4-20 22:17 编辑
假设$a_n$为大于1的最小正整数 $k$,使得恰好存在$n$个形式为$m!−k$的素数,如何快速计算出$a_{100}$?
页:
[1]
2