白新岭 发表于 2024-4-21 21:59:57

一百单八将的由来

本来是想找个更合适的版块,迫于无奈,在这个论坛上,只有编程擂台,没有挑战性的数学问题擂台,所以就将就吧。
在浏览量增加的问题上,一般是把一个自然数表示成:\(n^2+m^2+a^2\),其实好多时候,都不能表示,所以,放松条件,把n^2分离后,剩下的数可以用:\(n^a+m^b\)形式,只不过这里的a,b都需要大于等于2.
108有三种表示形式:\(108=10^2+2^3=9^2+3^3=3^3+3^4\)
你能找到第二个能用:\(n^a+m^b\)的表示形式吗?这里的a,b都是大于等于2的自然数。
是说它(自然数)能表示成:\(n^a+m^b\)的形式,而且在三种形式以上者。
菩提本无树
何须扫尘埃
数论高手请进来,能给出一个自然数可以表示成:\(n^a+m^b\)形式的,这里a,b大于等于2,最好给出它解组数的逼近公式。
这个问题可以与费马猜想像媲美,英国数学家安德鲁·怀尔斯能证明费马猜想,他对这个问题也束手无策

xbtianlang 发表于 2024-4-22 10:35:16

本帖最后由 xbtianlang 于 2024-4-22 11:02 编辑

535537
=2^12+3^12=2^12+9^6=2^12+27^4=2^12+81^3
=3^12+4^6=3^12+8^4=3^12+16^3=4^6+9^6
=4^6+27^4=4^6+81^3=8^4+9^6=8^4+27^4
=8^4+81^3=9^6+16^3=16^3+27^4=16^3+81^3

nyy 发表于 2024-4-22 11:00:38

xbtianlang 发表于 2024-4-22 10:35
535537
=2^12+3^12=2^12+9^6=2^12+27^4=2^12+81^3=3^12+2^12
=3^12+4^6=3^12+8^4=3^12+16^3=4^6+3^12=4^6+ ...

怎么来的?穷举法?

northwolves 发表于 2024-4-22 17:31:58

$128198143090625=a^4+b^2$
${a,b}={{170, 11322425}, {779, 11306188}, {1685, 10960700}, {2110, 10410425}, {2165, 10306700}, {2578, 9166663}, {2635, 8943700}, {2965, 7135300}, {3230, 4399175}, {3349, 1550468}}$

northwolves 发表于 2024-4-22 19:40:38

A217196                Integers expressible in at least two ways as a^3 + b^4, where a,b > 0.

4097, 10729, 15641, 175625, 195193, 408536, 531442, 535537, 549017, 831209, 852984, 883664, 1778625, 3185784, 4258089, 5555233, 8876304, 11338448, 11402289, 12721424, 13844736, 16777217, 16781312, 17182440, 17308657, 19169848, 19703736, 22667633, 26248698......

白新岭 发表于 2024-4-22 22:02:08

能起到抛砖引玉的效果就好。希望大家继续努力,写出更多三组以上解的自然数。
必定想给出它的渐近公式势必登天还难。
也可以,给出小范围内,不能表示成:\(n^a+m^b\)形式的自然数,这里要求a,b是大于等于2的,是直角三角形边长整数的自然数都有解,能最少表示成一组就行。

白新岭 发表于 2024-4-22 22:07:41

1不行,2可以,3不行(不能用\(n^a-m^b\)形式),还有一个要求n,m是正整数。4不行,因为0即不是正整数,也不是负整数,而是它们的分界点,5可以,6不行,7不行,8可以,.........

northwolves 发表于 2024-4-22 22:26:08

A085253                Numbers having no representation as sum of two powerful numbers (A001694).       

1, 3, 4, 6, 7, 11, 14, 15, 19, 21, 22, 23, 27, 30, 38, 39, 42, 46, 47, 49, 51, 55, 56, 60, 62, 66, 67, 69, 70, 71, 75, 77, 78, 79, 83, 84, 86, 87, 92, 93, 94, 95, 102, 103, 105, 107, 110, 111, 114, 115, 118, 119, 120, 123, 131, 138, 139, 142, 143, 147, 151, 154

A076871                Sum of two powerful numbers (definition (1), A001694).       
2, 5, 8, 9, 10, 12, 13, 16, 17, 18, 20, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 40, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 58, 59, 61, 63, 64, 65, 68, 72, 73, 74, 76, 80, 81, 82, 85, 88, 89, 90, 91, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 112, 113, 116, 117

northwolves 发表于 2024-4-22 22:35:20

能起到抛砖引玉的效果就好。希望大家继续努力,写出更多三组以上解的自然数。

A097102                Numbers n that are the hypotenuse of exactly 13 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 13 ways.               

1105, 1885, 2210, 2405, 2465, 2665, 3145, 3315, 3445, 3485, 3770, 3965, 4420, 4505, 4745, 4810, 4930, 5185, 5330, 5365, 5655, 5785, 5945, 6205, 6290, 6305, 6409, 6565, 6630, 6890, 6970, 7085, 7215, 7345, 7395, 7540, 7565, 7585, 7685, 7735, 7930, 7995

Search: written as a sum of two squares in ways

northwolves 发表于 2024-4-22 22:38:50

$50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3$

A011541                Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.               

2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
页: [1] 2 3
查看完整版本: 一百单八将的由来