求数列的通项公式
本帖最后由 yigo 于 2024-7-9 16:09 编辑数列1,2,2,3,3,3,3,4,4,4,4,4,4,4,5...
数n有n*(n-1)/2+1个,
求这个数列的通项公式。
=================================
通项公式为:
\(f(n)=int( \sqrt{6n}+1-\frac{5}{3 \sqrt{6n}})\)
===============================
证明:n按下列方式迭代到1,迭代次数不超过f(n)。
\(n \to n-\frac{f^2(n)-f(n)}{2} \to... \to1\) {1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6}
Table // Flatten 本帖最后由 yigo 于 2024-7-9 15:30 编辑
\(int( \sqrt{6n}+1-\frac{1}{\sqrt{n}})\)
这个不是很精确
====================================
这个验证了2000项没问题。
\(int( \sqrt{6n}+1-\frac{5}{3 \sqrt{6n}})\) 本帖最后由 王守恩 于 2024-7-10 09:24 编辑
先看一串数——OEIS——A360010——Gus Wiseman, Feb 11 2023
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8,
1, nn=9; First/@Select, 3], GreaterEqual@@#&]
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8,
2, Table // Flatten
这2个都谈不上是通项公式。楼主可以有一个OEIS——A360010通项公式吗?!哪就厉害了!!!
又: \(\bigg\lfloor\sqrt{\ 6 n\ }+ 1-\frac{ 5}{\ 3\ \sqrt{\ 6 n\ }\ }\bigg\rfloor=\bigg\lceil\sqrt{\ 6 n\ }-\frac{ 5}{\ 3\ \sqrt{\ 6n\ }\ }\bigg\rceil\)
王守恩 发表于 2024-7-10 08:58
先看一串数——OEIS——A360010——Gus Wiseman, Feb 11 2023
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, ...
======================
\(f(n)=int( \sqrt{6n}+\frac{1}{3 \sqrt{6n+1}})\)
只验证了300来项,不知道后面还会不会出偏差。 yigo 发表于 2024-7-10 09:19
======================
\(f(n)=int( \sqrt{6n}+\frac{1}{3 \sqrt{6n+1}})\)
只验证了300来项,不知 ...
验证到4500000(a=300)项,没出偏差。
Table - 5/(3 Power)], {a, 8}, {n, (a^3 + 5 a)/6, ((a + 1)^3 + 5*(a + 1))/6 + 1}]
{{1, 2, 2, 3}, {2, 3, 3, 3, 3, 4}, {3, 4, 4, 4, 4, 4, 4, 4, 5}, {4, 5,5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6}, {5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7},{6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8},
{7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9}, {8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10}}
Table
{{{2, 2}, {3, 3, 3, 3}, {4, 4, 4, 4, 4, 4, 4}, {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}, {6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6}, {7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7},
{8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}, {9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}}}
"解三次方程“思想没悟透,能再来个例子。或给4#——OEIS——A360010——配个通项公式?!谢谢! 谢谢 yigo !"解三次方程“,思路很牛很有创造性,试试简单的。
Table - 1/Power], {n, 127}]
{1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9}
a(1)=1,
a(2)=3,
a(3)=7,
a(4)=13,
a(5)=24,
a(6)=40,
a(7)=61,
a(8)=90,
a(9)=127,
得到一串数: 1, 3, 7, 13, 24, 40, 61, 90, 127, 172, 228, 295, 373, 465, 571, 691, 828, 982, 1153, 1344, 1555, 1786, 2040, 2317, 2617, 2943, 3295, 3673, 4080, 4516,...
{1, 3, 7, 13, 24, 40, 61, 90, 127, 172, 228, 295, 373, 465, 571, 691, 828, 982, 1153, 1344, 1555, 1786, 2040, 2317, 2617, 2943, 3295, 3673, 4080, 4516}
2, 4,6, 11, 16,21, 29, 37,45, 56, 67, 78, 92,106,120, 137, 154, 171,191, 211, 231,254,277, 300,326, 352, 378, 407, 436,
2, 2,5,5, 5, 8, 8, 8, 11, 11, 11, 14, 14, 14, 17, 17, 17, 20, 20, 20, 23, 23, 23, 26, 26, 26, 29, 29,
OEIS还没有这串数。 拿你给的那个数列k有k*(k+1)/2项来说吧。
假设f(n)=k,那么从第1项到等于k的最后1项,
一共有\( \displaystyle \sum_{i=1}^k \frac{i(i+1)}{2}=\frac{k(k+1)(k+2)}{6} \)项。
从第1项到等于(k-1)的最后1项,
一共有\( \displaystyle \sum_{i=1}^{k-1} \frac{i(i+1)}{2}=\frac{(k-1)k(k+1)}{6} \)项。
f(n)=k,所以\( \displaystyle \frac{(k-1)k(k+1)}{6}\lt n\leqslant \frac{k(k+1)(k+2)}{6} \)
解这个不等式就可以了,然后忽略一些小量近似,不过这通项公式要证明感觉还是挺麻烦,只是验证了很多项感觉没问题,通项公式也不唯一。 本帖最后由 yigo 于 2024-7-11 15:22 编辑
要证明\(f(n)=\lfloor \sqrt{6n}+\frac{1}{3 \sqrt{6n+1}}\rfloor\)是通项公式,即要证明:
当\(\displaystyle \frac{(k-1)k(k+1)}{6}\lt n\leqslant \frac{k(k+1)(k+2)}{6}\)时,\(f(n)=k\)。
易知f(n)是增函数,所以只要证明:
\(\displaystyle f \left ( \frac{(k-1)k(k+1)}{6}+1\right) =k\)和\(\displaystyle f \left ( \frac{(k(k+1)(k+2)}{6}\right) =k\),即:
\(\displaystyle \sqrt {(k-1)k(k+1)+6}+\frac{1}{3\sqrt {(k-1)k(k+1)+7}}\geqslant k\)
以及:
\(\displaystyle \sqrt {k(k+1)(k+2)}+\frac{1}{3\sqrt {k(k+1)(k+2)+1}} < k+1\) 谢谢 yigo!接4#。给出——OEIS——A360010——通项公式。请各位查验。 谢谢 yigo!
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8,
\(a(n)=\bigg\lfloor\sqrt{6n}+\frac{n+1}{(3n+\pi)\sqrt{6n}}\bigg\rfloor\)
页:
[1]
2