hawkzmy 发表于 2024-7-17 10:48:06

丘成桐数学竞赛原题

A box contains 750 red balls and 250 blue balls. Repeatedly pick a ball
uniformly at random from the box and remove it until all remaining balls have a single
color. (Note: no replacement).
Please find integer m such that the expectation value for the total number of the
remaining balls ∈
一个盒子里有750个红球和250个蓝球。反复地从盒子里均匀地挑选一个球,然后去掉它,直到所有剩下的球都有一个颜色。(注:没有更换)。请找到整数m,使剩余球总数的期望值为∈

yigo 发表于 2024-7-17 12:40:20

本帖最后由 yigo 于 2024-7-17 15:50 编辑

不知道理解的对不,设i个红球,j个篮球,期望为E(i,j),E(1,1)=1。

\(\displaystyle E(1,i)=E(i,1)=\frac{1}{1+i}i+\frac{i}{1+i}E(1,i-1)=\frac{i^2+i+2}{2(1+i)}\)

\(\displaystyle E(i,j)=\frac{i}{i+j}E(i-1,j)+\frac{j}{i+j}E(i,j-1)\)

excel拉了下,E(750,250)=3.32,故题中的m=3。

归纳了下,通项公式为:

\(\displaystyle E(i,j)=\frac{i}{j+1}+\frac{j}{i+1}\)

hawkzmy 发表于 2024-7-18 08:58:55

750/251+250/751=3.320937.......

lihpb00 发表于 2024-7-18 15:41:17

最小拿250次,最多拿750次,750/251+250/751
页: [1]
查看完整版本: 丘成桐数学竞赛原题