若用 a, b, c, d 来表示梯形最大面积。必有:a < b < c < d, c = b + 1。
Table)/(4 (d - a)), 0 < a < b < d, a + 2 b + 1 + d == n}, {a, b, d}, Integers], {n, 121, 150}]
a(10)——a(15)=a,b,c,d。 a(16)=a,b,d。
a(10)={1,2,3,4}
a(11)={1,2,3,5}
a(12)={1,2,4,5}
a(13)={1,3,4,5}
a(14)={2,3,4,5}
a(15)={2,3,4,6}
a(16)={1,4,6}
a(17)={2,4,6}
a(18)={3,4,6}
a(19)={3,4,7}
a(20)={2,5,7}
a(21)={3,5,7}
a(22)={4,5,7}
a(23)={4,5,8}
a(24)={3,6,8}
a(25)={4,6,8}
a(26)={5,6,8}
a(27)={5,6,9}
a(28)={4,7,9}
a(29)={5,7,9}
a(30)={5,7,10}
a(31)={6,7,10}
a(32)={5,8,10}
a(33)={6,8,11}
a(34)={6,8,11}
a(35)={7,8,11}
a(36)={6,9,11}
a(37)={7,9,11}
a(38)={7,9,12}
a(39)={8,9,12}
a(40)={7,10,12}
a(41)={8,10,12}
a(42)={8,10,13}
a(43)={9,10,13}
a(44)={8,11,13}
a(45)={9,11,13}
a(46)={9,11,14}
a(47)={8,12,14}
a(48)={9,12,14}
a(49)={9,12,15}
a(50)={10,12,15}
a(51)={9,13,15}
a(52)={10,13,15}
a(53)={10,13,16}
a(54)={11,13,16}
a(55)={10,14,16}
a(56)={11,14,16}
a(57)={11,14,17}
a(58)={12,14,17}
a(59)={11,15,17}
a(60)={12,15,17}
a(61)={12,15,18}
a(62)={13,15,18}
a(63)={12,16,18}
a(64)={13,16,18}
a(65)={13,16,19}
a(66)={14,16,19}
a(67)={13,17,19}
a(68)={13,17,20}
a(69)={14,17,20}
a(70)={14,17,21}
a(71)={14,18,20}
a(72)={14,18,21}
a(73)={15,18,21}
a(74)={15,18,22}
a(75)={16,18,22}
a(76)={15,19,22}
a(77)={16,19,22}
a(78)={16,19,23}
a(79)={17,19,23}
a(80)={16,20,23}
a(81)={17,20,23}
a(82)={17,20,24}
a(83)={18,20,24}
a(84)={17,21,24}
a(85)={18,21,24}
a(86)={18,21,25}
a(87)={19,21,25}
a(88)={18,22,25}
a(89)={19,22,25}
a(90)={19,22,26}
a(91)={20,22,26}
a(92)={19,23,26}
a(93)={20,23,26}
a(94)={20,27,27}
a(95)={19,24,27}
a(96)={20,24,27}
a(97)={20,24,28}
a(98)={21,24,28}
a(99)={20,25,28}
a(100)={21,25,28}
a(101)={21,25,29}
a(102)={22,25,29}
a(103)={21,26,29}
a(104)={22,26,29}
a(105)={22,26,30}
a(106)={23,26,30}
a(107)={22,27,30}
a(108)={23,27,30}
a(109)={23,27,31}
a(110)={24,27,31}
a(111)={23,28,31}
a(112)={24,28,31}
a(113)={24,28,32}
a(114)={25,28,32}
a(115)={24,29,32}
a(116)={25,29,32}
a(117)={25,29,33}
a(118)={26,29,33}
a(119)={25,30,33}
a(120)={26,30,33}
a(121)={26,30,34}
a(122)={27,30,34}
a(123)={26,31,34}
a(124)={26,31,35}
a(125)={27,31,35}
a(126)={27,31,36}
a(127)={27,32,35}
a(128)={27,32,36}
a(129)={28,32,36}
a(130)={28,32,37}
a(131)={29,32,37}
a(132)={28,33,37}
a(133)={29,33,37}
a(134)={29,33,38}
a(135)={30,33,38}
a(136)={29,34,38}
a(137)={30,34,38}
a(138)={30,34,39}
a(139)={31,34,39}
a(140)={30,35,39}
a(141)={31,35,39}
a(142)={31,35,40}
a(143)={32,35,40}
a(144)={31,36,40}
a(145)={32,36,40}
a(146)={32,36,41}
a(147)={33,36,41}
a(148)={32,37,41}
a(149)={33,37,41}
a(150)={33,37,42} 这个问题有现实意义。梯形4条边(不等)的和=987654321,最大面积=?。
主帖类似给定一组平行边的等周多边形问题
可以参考帖子:[求助] 给定一个内角的等周多边形问题
已知 n 边形有一组平行边,周长为 n,求它的最大面积 northwolves 发表于 2024-12-12 17:14
a为上底,则 $S=\frac{(a+d) \sqrt{(-a-b+c+d) (a+b+c-d) (b-a-c+d) (b+c+d-a)}}{4 (d-a)}$
已知梯形(4条边是4个不同整数)周长 = 4n + 2, 则梯形最大面积可以有下面的通项公式。
Table[((2 n + 1) Sqrt[((2 n + 1)^2 - (2 Floor] + 1)^2) ((2 Floor] + 1)^2 - 1)])/(4 (2 Floor] + 1)), {n, 2, 90}]
这是标准答案,就是数目大了会罢工。a为上底,b=n,c=n+1
Table)/(4 (d - a)), 0 < a < d, a + n + (n + 1) + d == 4 n + 2}, {a, d}, Integers], {n, 2, 90}] 已知梯形周长,用4条整数边={上底,左腰,右腰,下底}={a,b,c,d},来表示梯形最大面积。可以有公式(A)。
公式(A)。Table)/(4 (d - a)), a+b+c+d==n, 0<a<d, 0<b≤c, c-b<d-a<b+c},{a,b,c,d},Integers],{n,7,35}]
a(07)={1,2,2,2}
a(08)={1,2,2,3}
a(09)={2,2,2,3}
a(10)={1,3,3,3}
a(11)={2,3,3,3}
a(12)={2,3,3,4}
a(13)={3,3,3,4}
a(14)={2,4,4,4}
a(15)={3,4,4,4}
a(16)={3,4,4,5}
a(17)={4,4,4,5}
a(18)={3,5,5,5}
a(19)={4,5,5,5}
a(20)={4,5,5,6}
a(21)={3,5,5,6}
a(22)={4,6,6,6}
a(23)={5,6,6,6}
a(24)={5,6,6,7}
a(25)={4,6,6,7}
a(26)={5,7,7,7}
a(27)={6,7,7,7}
a(28)={6,7,7,7}
a(29)={7,7,7,8}
公式(A)速度慢了。换成公式(B),答案没有变。
公式(B)。Table[((n - 2 Floor[(n + 2)/4]) Sqrt[(2 Floor[(n + 4)/4] - n) (n - 4 Floor[(n + 2)/4] - 2 Floor[(n + 4)/4])])/4, {n, 7, 350}]
对公式(B)取整数。得到公式(C)。
公式(C)。Table) Sqrt[(2 Floor[(n + 4)/4] - n) (n - 4 Floor[(n + 2)/4] - 2 Floor[(n + 4)/4])])/4], {n, 7, 350}]
3, 3, 5, 6, 7, 8, 10, 12, 14, 15, 18, 20, 22, 24, 27, 30, 33, 35, 39, 42, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 85, 90, 95, 99, 105, 110, 115, 120, 126, 132, 138, 143, 150, 156, 162, 168, 175, 182, 189, 195,
203, 210, 217, 224, 232, 240, 248, 255, 264, 272, 280, 288, 297, 306, 315, 323, 333, 342, 351, 360, 370, 380, 390, 399, 410, 420, 430, 440, 451, 462, 473, 483, 495, 506, 517, 528, 540, 552, 564, 575, 588,
600, 612, 624, 637, 650, 663, 675, 689, 702, 715, 728, 742, 756, 770, 783, 798, 812, 826, 840, 855, 870, 885, 899, 915, 930, 945, 960, 976, 992, 1008, 1023, 1040, 1056, 1072, 1088, 1105, 1122, 1139, 1155,
1173, 1190, 1207, 1224, 1242, 1260, 1278, 1295, 1314, 1332, 1350, 1368, 1387, 1406, 1425, 1443, 1463, 1482, 1501, 1520, 1540, 1560, 1580, 1599, 1620, 1640, 1660, 1680, 1701, 1722, 1743, 1763, 1785, 1806}
单独把第1, 3, 5, 7, 9, ...项取出来。
3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588,
612, 637, 663, 689, 715, 742, 770, 798, 826, 855, 885, 915, 945, 976, 1008, 1040, 1072, 1105, 1139, 1173, 1207, 1242, 1278, 1314, 1350, 1387, 1425, 1463, 1501, 1540, 1580, 1620, 1660, 1701, 1743, 1785,
可以有公式(D)。
公式(D)。Table))^2], {n, 4, 100}]
注意:公式(D)可是出现了大名鼎鼎的常数" e " ! northwolves 发表于 2024-12-12 17:14
a为上底,则 $S=\frac{(a+d) \sqrt{(-a-b+c+d) (a+b+c-d) (b-a-c+d) (b+c+d-a)}}{4 (d-a)}$
这样也行。用4条边来表示梯形面积。
梯形=下底,左腰,右腰,上底=a,b,c,d,则梯形面积S可以有下面的通项公式。
\(\D S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4(a-d)}\)
\(\D d=0, S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4(a-d)}=\frac{\sqrt{\big((b+c)^2-a^2\big)\big(a^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4}\) ————海伦公式
\(\D c=b,\ S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4(a-d)}=\frac{(a+d)\sqrt{4b^2-(a-d)^2\ \ \ }\ \ \ \ }{4}\)————等腰梯形
\(\D c^2=b^2+(a-d)^2,\D S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4(a-d)}=\frac{b(a+d)}{2}\) ————直角梯形
\(\D c=b,\ \ \ d=a,\S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ \ \ \ }\ \ \ \ \ \ }{4(a-d)}=a*b\ \)————长方形
\(\D c=b=d=a,S=\frac{(a+d)\sqrt{\big((b+c)^2-(a-d)^2\big)\big((a-d)^2-(b-c)^2\big)\ \ \ \ }\ \ \ \ \ }{4(a-d)}=a^2\) ————正方形 这样也行。用4条边来表示梯形面积。
梯形=下底,左腰,右腰,上底=a,b,c,d,则梯形面积S可以有下面的通项公式。
\(\D S=\frac{(a+d) \sqrt{\big((a-d+c)^2-b^2\big) \big(b^2-(a-d-c)^2\big)\ \ \ \ \ }\ \ \ \ \ }{4 (a-d)}\)
\(\D S=\frac{(a+d) \sqrt{\big((a-d+b)^2-c^2\big) \big(c^2-(a-d-b)^2\big)\ \ \ \ \ }\ \ \ \ \ }{4 (a-d)}\)
页:
1
[2]