就是链接打不开啊
可以在此看到兩題的解,已下載單頁面。
https://quanquan.space/viewtopic.php?p=6541
或許這兩題的解法可作參考。 知道答案是\(\sqrt{7}\),那就来凑吧。
令\(x=\cos(\frac{\pi}{7})\),由\(\cos(\frac{3\pi}{7})=-\cos(\frac{4\pi}{7})\)可得
\(8x^3-4x^2-4x+1=0\)
令\(u=\frac{2\sin(\frac{\pi}{7})+\sin(\frac{2\pi}{7})}{\cos(\frac{2\pi}{7})}=\frac{2\sqrt{1-x^2}(1+x)}{2x^2-1}>0\),则
\(u^2=\frac{4(1-x^2)(1+x)^2}{4x^4-4x^2+1}\),
利用前面的方程将\(x^4\)降幂到\(x^3\),可得\(u^2=7\),故\(u=\sqrt{7}\). 楼主的答案是$\sqrt{7}$,式子并不具备对称性,那就只能死算了.
既然是死算, 咱也来一个, 可不能输了气势.
.
\(\D\frac{2\sin(\pi/7)+\sin(2\pi/7)}{\cos(2\pi/7)}\)
=\(\D\frac{2\sin(\pi/7)\big(1+\cos(\pi/7)\big)}{\cos(2\pi/7)}\)
=\(\D\frac{4\sin(\pi/7)\cos(\pi/14)\cos(\pi/14)}{\cos(2\pi/7)}\)
=\(\D\frac{4\sin(\pi/7)\cos(\pi/14)\sin(6\pi/14)}{\sin(3\pi/14)}\)
=\(\D8\sin(\pi/7)\cos(\pi/14)\cos(3\pi/14)\)
=\(\D8\sin(2\pi/14)\sin(4\pi/14)(\sin(6\pi/14)\)
=\(\D8\big(2\sin(\pi/14)\sin(6\pi/14)\big)\big(2\sin(2\pi/14)\sin(5\pi/14)\big)\big(2\sin(3\pi/14)\sin(4\pi/14)\big)\)
=\(\D(2\sin(\pi/14))(2\sin(2\pi/14))(2\sin(3\pi/14))(2\sin(4\pi/14))(2\sin(5\pi/14))(2\sin(6\pi/14))\)
=\(\D\sqrt{\ 7\ }\)
详见:小题大作> 求证:\(\D(2\sin(\pi/4))^2=2\) 13#求解
令\(t=\cos{x}\),方程\(\cos{2x}=\cos{5x}\)化为:
\(16t^5-20t^3-2t^2+5t+1=0\)
即:\((t-1)(2t+1)(8t^3+4t^2-4t-1)=0\)
\(t_1=\cos(\frac{2\pi}{7}),t_2=\cos(\frac{4\pi}{7}),t_3=\cos(\frac{6\pi}{7})\)是\(8t^3+4t^2-4t-1=0\)的三个根。
令\(t_1=s_1^3,t_2=s_2^3,t_3=s_3^3\),
则:\(s_1^3+s_2^3+s_3^3=-\frac{1}{2},s_1^3s_2^3+s_2^3s_3^3+s_3^3s_1^3=-\frac{1}{2},s_1s_2s_3=\frac{1}{2}\)
令\(u=s_1+s_2+s_3,v=s_1s_2+s_2s_3+s_3s_1\),题目即求\(u\)
利用恒等式:\(x^3+y^3+z^3-3xyz=(x+y+z)^3-3(xy+yz+zx)(x+y+z)\)
有\(u^3-3uv=-2,v^3-\frac{3}{2}uv=-\frac{5}{4}\)
消去\(v\)得:\((u^3+2)^3-\frac{1}{2}(3u)^3(u^3+2)+\frac{5}{4}(3u)^3=0\)
软件求得:\(u^3=\frac{5-3\sqrt{7}}{2}\),即:\(u=\sqrt{\frac{5-3\sqrt{7}}{2}}\)
\[\D\prod_{k=1}^{1012}\bigg(2\sin\frac{k\ \ \pi}{\ 2025\ }\bigg)^2=2025\] 王守恩 发表于 2025-1-22 06:34
\[\D\prod_{k=1}^{1012}\bigg(2\sin\frac{k\ \ \pi}{\ 2025\ }\bigg)^2=2025\]
$\prod _{k=1}^{2024} \tan \left(\frac{k \pi }{2025}\right)=2025$
页:
1
[2]