初中几何题,∠ABC=45°,求BP的长度
初中几何题,∠ABC=45°,求BP的长度。由`AC=2`及给定的内角易得`BC=\sqrt6,AB=1+\sqrt3`,
设BP=x, CD=DP=y.
如图,延长BD交边AC于E,则APDE四点共圆。取圆(C,D,E)与边BC的交点F,则BPDF亦共圆。
于是可得 BP·BA=BD·BE=BF·BC,CD·CP=CF·CB→ BP·BA+CD·CP=BC^2, 即\[
(1+\sqrt3)x+2y^2=6\tag1
\]又,在△BCP中∠B=45°,由余弦定理可得\[
x^2-2\sqrt3x+6=4y^2\tag2
\]2×(1)+(2)得\[
x^2+2x-6=0\\
→ x=\sqrt7-1
\]
设BD= z, 直接用余弦定理列三个方程\[
y^2-yz+z^2=x^2\\
y^2+yz+z^2=6\\
x^2-2\sqrt3x+6=4y^2
\]手工不太好解。
求等边三角形ABC的边长
试验一下链接里的公式。
\(BC=\sqrt{6}\),设 \(CD=PD=x\),利用链接里的公式可求得
\begin{align*}
&BD=\frac{\sqrt{3}+\sqrt{7}}{2}x\\
&BC^2=\frac{7+\sqrt{3}+\sqrt{7}+\sqrt{21}}{2}x^2=\frac{(\sqrt{7}+1)(\sqrt{3}+\sqrt{7})}{2}x^2\\
&BP^2=\frac{7-\sqrt{3}-\sqrt{7}+\sqrt{21}}{2}x^2=\frac{(\sqrt{7}-1)(\sqrt{3}+\sqrt{7})}{2}x^2
\end{align*}
于是\[
BP^2=\frac{\dfrac{(\sqrt{7}+1)(\sqrt{3}+\sqrt{7})}{2}x^2}{\dfrac{(\sqrt{7}-1)(\sqrt{3}+\sqrt{7})}{2}x^2}\cdot BC^2=(\sqrt{7}-1)^2
\]即\[
BD=\sqrt{7}-1
\]
$$(\frac{y}{\sqrt{2}})^2+(\frac{y}{\sqrt{2}}+\sqrt{2})^2=(2*\sqrt{2})^2$$
$$y=\sqrt{7}-1$$
`(x+1)^2+1^2=(2\sqrt2)^2`
用正弦定理列方程,也能解决这个问题。
而且似乎用正弦定律比余弦定律简单 (*假设PD=DC=a,BP=b,BD=c,分别对60°120°45°角使用余弦定理,列方程组解决问题*)
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
deg=Pi/180;(*角度制下1°所对应的弧度*)
(*子函数,利用三边计算角的余弦值,角是c边所对的角*)
cs:=((a^2+b^2-c^2)/(2*a*b))
(*线段长度变量赋值,AB与BA都赋值,这样使用线段长度变量时,就不用考虑线段长度变量名的两个端点哪个在前、哪个在后了*)
BC=CB=Sqrt;
(*假设PD=DC=a,BP=b,BD=c,分别对60°120°45°角使用余弦定理,列方程组解决问题*)
ans=Solve[{
cs==Cos,(*三角形DBE余弦定理*)
cs==Cos,(*三角形EBC余弦定理*)
cs==Cos (*三角形DBC余弦定理*)
},{a,b,c},Reals]//FullSimplify//ToRadicals;
Grid(*列表显示*)
aaa=Select/.#)&];(*过滤出非负数解*)
Grid(*列表显示*)
求解结果
\[\begin{array}{lll}
a\to -\sqrt{\frac{1}{2} \left(\sqrt{3}-\sqrt{7} \left(\sqrt{3}+1\right)+7\right)} & b\to \sqrt{7}-1 & c\to -\sqrt{\frac{1}{2} \left(\sqrt{21}-\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} \\
a\to \sqrt{\frac{1}{2} \left(\sqrt{3}-\sqrt{7} \left(\sqrt{3}+1\right)+7\right)} & b\to \sqrt{7}-1 & c\to \sqrt{\frac{1}{2} \left(\sqrt{21}-\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} \\
a\to -\sqrt{\frac{1}{2} \left(-\sqrt{21}+\sqrt{2 \left(5-\sqrt{21}\right)}+7\right)} & b\to \sqrt{7}+1 & c\to \sqrt{\frac{1}{2} \left(\sqrt{21}+\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} \\
a\to \sqrt{\frac{1}{2} \left(-\sqrt{3}+\sqrt{7}-\sqrt{21}+7\right)} & b\to \sqrt{7}+1 & c\to -\sqrt{\frac{1}{2} \left(\sqrt{21}+\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} \\
a\to -\sqrt{\frac{1}{2} \left(\sqrt{21}+\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} & b\to -\sqrt{7}-1 & c\to \sqrt{\frac{1}{2} \left(-\sqrt{21}+\sqrt{2 \left(5-\sqrt{21}\right)}+7\right)} \\
a\to \sqrt{\frac{1}{2} \left(\sqrt{21}+\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} & b\to -\sqrt{7}-1 & c\to -\sqrt{\frac{1}{2} \left(-\sqrt{21}+\sqrt{2 \left(5-\sqrt{21}\right)}+7\right)} \\
a\to -\sqrt{\frac{1}{2} \left(\sqrt{21}-\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} & b\to 1-\sqrt{7} & c\to -\frac{1}{\sqrt{\frac{2}{-\sqrt{21}-\sqrt{2 \left(5-\sqrt{21}\right)}+7}}} \\
a\to \sqrt{\frac{1}{2} \left(\sqrt{21}-\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} & b\to 1-\sqrt{7} & c\to \frac{1}{\sqrt{\frac{2}{-\sqrt{21}-\sqrt{2 \left(5-\sqrt{21}\right)}+7}}} \\
\end{array}\]
非负解
\[\begin{array}{lll}
a\to \sqrt{\frac{1}{2} \left(\sqrt{3}-\sqrt{7} \left(\sqrt{3}+1\right)+7\right)} & b\to \sqrt{7}-1 & c\to \sqrt{\frac{1}{2} \left(\sqrt{21}-\sqrt{2 \left(\sqrt{21}+5\right)}+7\right)} \\
\end{array}\]
没想到DB DC的长度有些复杂!
页:
[1]