winxos 发表于 2010-2-1 23:51:56

大一的时候偶然得到一本射影几何的ppt,
好像是浙大的,当时看了体会到了好多神奇的概念,讲的非常的好,于是做成了一本pdf。

不过我现在都忘记的差不多了,不过当时感觉不是很难的样子。

我找找看看还能找到不。

hujunhua 发表于 2010-2-2 19:24:50

郭大啊,太不安全了,我要昏死了。

我在这个帖子下回复了1000多字介绍三次射影曲线,改错时按了一个退格键,没注意焦点已跑了,回到了前一个页面,再回来时那1000多字没有了,成空白了。

算了,先看mathe的吧

hujunhua 发表于 2010-2-2 19:28:26

大受打击

数学星空 发表于 2010-2-2 19:29:42

呵,最好的方法是先用word写好后,再复制贴上来。。。。

mathe 发表于 2010-2-2 20:18:22

三次射影曲线我不熟悉,倒是椭圆曲线本身可以找到比较多的介绍材料。
我是都在Notepad里面写好了才贴到bbs上的:)当然有时公式输错了需要再修改一下

gxqcn 发表于 2010-2-2 20:46:50

郭大啊,太不安全了,我要昏死了。

我在这个帖子下回复了1000多字介绍三次射影曲线,改错时按了一个退格键,没注意焦点已跑了,回到了前一个页面,再回来时那1000多字没有了,成空白了。

hujunhua 发表于 2010-2-2 19:24 http://bbs.emath.ac.cn/images/common/back.gif

如果发现编辑搞乱了,千万别点最后那个确定按钮;而应直接取消,刷新页面后再进行编辑。

在[教程] 发帖规则及经验技巧里9#——帖子提交前应做的事(轻读、修订、备份) 特别提到了备份:
...

备份
辛辛苦苦码了大段文字按提交。什么有网络问题?!那才欲哭无泪呢!所以备份很重要,尤其是大帖长帖。
最好是在按提交按钮前,将帖子内容复制备份到前面提到的 UltraEdit 或 UEStudio 文字处理软件里,此时包括文字、排版标签都有了。
如果当前是“所见即所得模式”,最好切换回“Discuz!代码模式”,否则排版形式很难得到备份。

gxqcn 发表于 2008-4-12 15:37 http://bbs.emath.ac.cn/images/common/back.gif

mathe 发表于 2010-2-2 20:56:40

我们查看射影平面中直线以及这条直线上的一个点(x,y,z),两者之间满足条件ax+by+cz=0
那么对以为齐次坐标的直线和(a,b,c)为坐标的点,显然有这条直线过这个点。
这个表示,对于射影平面中一个命题,如果我们将所有直线替换成点,将点替换成直线,
直线上的一点替换成过一点的直线,两条直线的交点替换成两点决定的直线,过两点确定的直线替换成
两条直线的交点等等,我们可以得到一个对偶命题,而对偶命题必然同原命题等价。
我们看迪沙格定理:如果两个三角形对应顶点的连线共点,那么三个对应边的交点必然共线。(现在要证明这个定理
很简单,通过投影变换将两组对应边的交点投影到无穷远直线,很容易就得出三角形相似)
那么我们看它的对偶命题,对应顶点的连线变成对应边的交点,共点变共线等等,得到对偶命题是
如果两个三角形对应边的交点共线,那么三条对应顶点的连线必然共点,也就是它正好是原命题的逆命题。
也就是迪沙格定理和它的逆定理是等价的,所以也必然是成立的。
现在我们将对偶命题的概念扩展到二次曲线。举个例子,我们看圆的方程$x^2+y^2-z^2=0$,如果我们把看成
直线的齐次坐标,那么相当于对于这样的直线,其齐次坐标可以写成$$,我们知道,这样的直线其实就是
所有到原点的距离正好为1的直线的集合,它正好是单位圆的所有切线。类似的对于任何二次曲线,如果我们把它的方程看成是
直线的方程,那么满足条件的所有直线会正好是另外一条二次曲线的所有切线。反之依然。
所以对于包含二次曲线(甚至于高次曲线)的命题,它的对偶命题是:
二次曲线上的一点变成它的一条切线,切线变成一点。曲线外面的一点(过它有两条切线)变成同曲线相交的一条直线,曲线内部
的一点变成同曲线没有交点的一条直线,反之依然。那么对偶命题和原命题也会等价。
比如在7#我们有命题如果三角形三条边同一个圆锥曲线相切,那么三条切点和顶点的连线共点。
那么这个命题的对偶命题就是圆锥曲线的内接三角形,那么三个顶点的切线和对边的交点共线

同样命题2.1说圆锥曲线及其上面一点和外面一点的映射可以确定一个投影变换,其对偶命题就是圆锥曲线的一条切线(等价于上面一点)
和一条同圆锥曲线相交的直线确定一个投影变换等等。

gxqcn 发表于 2010-2-2 20:58:40

13# hujunhua

但愿别影响到老兄的兴致,让大家可以看到三次射影曲线的介绍,开开眼界。

wayne 发表于 2010-2-3 00:56:11

17# mathe


mathe,:victory:
你的图画的挺好的,
是用了什么软件画的

winxos 发表于 2010-2-3 15:11:24

翻了半天找到了。不过都是些初级的东西。感兴趣的朋友可以下载一下。
页: 1 [2] 3 4 5
查看完整版本: 射影几何简介