mathe 发表于 2008-3-2 15:30:37

一道来源于编译器优化中的图论难题

$G(V,E)$是一个有向图,V是顶点的集合,E是边的集合。并且已知存在一个边上的权函数$f: E->bar(Z^-)$。其中$bar(Z^-)$表示非负整数集。
现在将G看成一个无向图,那么对于这个无向图中任何一个环路,我们可以定义环路上的权重为环路上所有边的权重的有向和
(也就是边的权重取和,但是边取权重时,如果边e的方向同环路方向相同,取边权重为f(e),如果相反,取边权重为-f(e))。
如果所有环路的权重的最大公约数为d,而且d>1,求证,存在函数$g: V->bar(Z^-)$,使得对于任意边$e= (:u,v:) in E$,定义
$f'(e)=f(e)+g(v)-g(u)$,那么$f$'的值域为$d bar(Z^-)$,也就是存在顶点到非负整数集的函数g,使得对应的调整后的边到非负整数集的权重函数$f'$取值都是
d的倍数,当然也要求是非负整数。

相关的编译器优化方面资料:http://bbs.emath.ac.cn/thread-173-6-1.html
页: [1]
查看完整版本: 一道来源于编译器优化中的图论难题