一道常微分方程的问题
设 x= tan s , y= tan t化简得: sin(t-s)dt/ds=1
再令 t-s 为 z , 。。。。
再回代。。。。 2# wayne
是的 我正是这种 本帖最后由 葡萄糖 于 2018-12-1 13:52 编辑
wayne 发表于 2011-3-26 15:29
设 x= tan s , y= tan t
化简得: sin(t-s)dt/ds=1
再令 t-s 为 z , 。。。。
好方法!
\begin{align*}
&&\left(y-x\right)\sqrt{1+x^2}\frac{{\rm\,d}y}{{\rm\,d}x}&=\left(1+y^2\right)^{\frac{3}{2}}\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\frac{1}{\cos\,v}\left(\frac{\cos^2v\,{\rm\,d}u}{\cos^2u\,{\rm\,d}v}\right)&=\frac{1}{\cos^3u}\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\frac{\cos^3u}{\cos\,v}\left(\frac{\cos^2v\,{\rm\,d}u}{\cos^2u\,{\rm\,d}v}\right)&=1\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\left(\cos\,u\cos\,v\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\left(\sin\,u\cos\,v-\sin\,v\cos\,u\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\sin\left(u-v\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\frac{{\rm\,d}u}{{\rm\,d}v}&=\frac{1}{\sin\left(u-v\right)}\\
&\Rightarrow&\frac{{\rm\,d}\left(u-v\right)}{{\rm\,d}v}&=\frac{1}{\sin\left(u-v\right)}-1\\
&\Rightarrow&u-v&=\ln\left|\tan\frac{u-v}{2}\right|-v+C\\
&\Rightarrow&u&=\ln\left|\tan\frac{u-v}{2}\right|+C\\
&\Rightarrow&\arctan\,y&=\ln\left|\tan\frac{\arctan\,y-\arctan\,x}{2}\right|+C\\
\end{align*} 本帖最后由 葡萄糖 于 2018-12-2 13:19 编辑
葡萄糖 发表于 2018-12-1 13:50
好方法!
\begin{align*}
&&\left(y-x\right)\sqrt{1+x^2}\frac{{\rm\,d}y}{{\rm\,d}x}&=\left(1+y^2\right)^{\frac{3}{2}}\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\frac{1}{\cos\,v}\left(\frac{\cos^2v\,{\rm\,d}u}{\cos^2u\,{\rm\,d}v}\right)&=\frac{1}{\cos^3u}\\
&\Rightarrow&\cdots\cdots\\
&\Rightarrow&\sin\left(u-v\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\cdots\cdots\\
&\Rightarrow&\frac{{\rm\,d}\left(u-v\right)}{{\rm\,d}v}&=\frac{1}{\sin\left(u-v\right)}-1\\
&{\color{red}{\nRightarrow}\,}&{\color{red}{u-v}}&{\color{red}{=\ln\left|\tan\frac{u-v}{2}\right|-v+C}\,}\\
&\Rightarrow&u&=\ln\left|\tan\frac{u-v}{2}\right|+C\\
&\Rightarrow&\arctan\,y&=\ln\left|\tan\frac{\arctan\,y-\arctan\,x}{2}\right|+C\\
\end{align*}
昨天的解答有点错误,今天改正一下:lol:
\begin{align*}
&&\left(y-x\right)\sqrt{1+x^2}\frac{{\rm\,d}y}{{\rm\,d}x}&=\left(1+y^2\right)^{\frac{3}{2}}\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\frac{1}{\cos\,v}\left(\frac{\cos^2v\,{\rm\,d}u}{\cos^2u\,{\rm\,d}v}\right)&=\frac{1}{\cos^3u}\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\frac{\cos^3u}{\cos\,v}\left(\frac{\cos^2v\,{\rm\,d}u}{\cos^2u\,{\rm\,d}v}\right)&=1\\
&\Rightarrow&\left(\tan\,u-\tan\,v\right)\left(\cos\,u\cos\,v\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\left(\sin\,u\cos\,v-\sin\,v\cos\,u\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\sin\left(u-v\right)\left(\frac{{\rm\,d}u}{{\rm\,d}v}\right)&=1\\
&\Rightarrow&\frac{{\rm\,d}u}{{\rm\,d}v}&=\frac{1}{\sin\left(u-v\right)}\\
&\Rightarrow&\frac{{\rm\,d}\left(u-v\right)}{{\rm\,d}v}&=\frac{1}{\sin\left(u-v\right)}-1\\
&\Rightarrow&\frac{{\rm\,d}\left(u-v\right)}{{\rm\,d}v}&=\frac{1-\sin\left(u-v\right)}{\sin\left(u-v\right)}\\
&\Rightarrow&\frac{\sin\left(u-v\right)\,}{1-\sin\left(u-v\right)}{\rm\,d}\left(u-v\right)&={\rm\,d}v\\
&\Rightarrow&\tan\left(\frac{u-v}{2}+\frac{\pi}{4}\right)-u+v&=v+C\\
&\Rightarrow&\tan\left(\frac{u-v}{2}+\frac{\pi}{4}\right)&=u+C\\
&\Rightarrow&\frac{1+\cos\left(u-v\right)+\sin\left(u-v\right)}{1+\cos\left(u-v\right)-\sin\left(u-v\right)}&=u+C\\
\end{align*}
页:
[1]