ahtf738903 发表于 2012-10-27 22:01:05

我有2个难题,欢迎各位帮忙解答

1. 3x+2y+5xy-7z=0,此题的所有整数解能否表达成例如此题的答案形式:


解 2a+5b+7c+3d=10的所有整数解


a= -18-54g+21f+5e
b= 6+18g-7f-2e
c= 1+3g-f
d= 3-g


e、f、g可以是任意整数


如此题的所有整数解能表达成例如此题的答案形式,请详细说明解题方法等


2. 3x+4xy+7y=z,其中x、y、z为正整数


尽量不用电脑程式辅助,有什么方法能更快判决z为某正整数是否此题的解?

sunwukong 发表于 2012-10-28 07:41:39

2. 3x+4xy+7y=z,其中x、y、z为正整数


尽量不用电脑程式辅助,有什么方法能更快判决z为某正整数是否此题的解?

当$x=-2$ 时,
$z=3x+4xy+7y=3x+(4x+7)y=-6-y$,

所以, 不管 z要等于什么整数 a, 只要令 $x=-2$,$y=-6-a$,即
z 的值域为所有整数

sunwukong 发表于 2012-10-28 10:11:37

看错题目,没注意到“ x、y、z 为正整数”的限制,少看了一个“正”字,3# 的解答是错误的。更正如下:

2. 3x+4xy+7y=z,其中 x、y、z为正整数

尽量不用电脑程式辅助,有什么方法能更快判决 z 为某正整数是否此题的解?

因为 x,y 是正整数,所以

$z=3x+4xy+7z>=3+4+7=14$,所以,

当 $1<=z<=13$ 时,z 不是此题的解

$z=3x+7y+4xy$
$=4(xy+3/4x+7/4y)$
$=4[(x+7/4)(y+3/4)-21/16]$
$=1/4*[(4x+7)(4y+3)-21]$
所以:
$4z+21=*(4y+3)$

当 $z>=14$ 时,判断方法是:
令 $A=4z+21$,然后下面的两个方法,选一个做
(1)方法1:把 $A$ 分解因式,当 $A$ 能分解成两个 $4a+3$ 型式的数相乘,并且两个数都大于等于 7时,$z$ 就是此题的解。
(2)方法2:用 $A$ 去逐个试除以下等差数列 7,11,15,19,23,…,当某个数能整除,且商也在此数列中时,$z$ 就是此题的解;当试除到某个数字,商小于或等于除数,也找不到能整除,或者能整除,但商不在数列中时,则 $z$ 不是此题的解。

例子:
(1) $z=47$,$A=4xx47+21=209$,分解 $209=11xx19$,而 11、19 都是 $4a+3$ 型的数,$11=4xx2+3$,$19=4xx4+3$,且都大于 7 ,所以 47 是此题的解。

(2) $z=46$,$A=4xx46+21=205$
    $205/7=29+2/7$
    $205/11=18+7/11$
    $205/15=13+10/15$,此时,商 13 已经 小于 15 了,所以 46 不是此题的解。

wayne 发表于 2012-10-28 14:00:16

1# ahtf738903
按模7穷举解答之,即可. {x,y}有这么几组:
{7 c1, 7 c2},
{2 + 7 c1, 3 + 7 c2},
{3 + 7 c1, 4 + 7 c2},
{4 + 7 c1, 2 + 7 c2},
{5 + 7 c1, 1 + 7 c2},
{6 + 7 c1, 6 + 7 c2}
页: [1]
查看完整版本: 我有2个难题,欢迎各位帮忙解答