chyanog 发表于 2012-12-13 18:38:55

百度之星的一道与斐波那契数列有关的题

题目来源:http://astar.baidu.com/index.php?r=home/detail&id=2

du熊对数学一直都非常感兴趣。最近在学习斐波那契数列的它,向你展示了一个数字串,它称之为“斐波那契”串:

11235813471123581347112358........

聪明的你当然一眼就看出了这个串是这么构造的:
1.先写下两位在0~9范围内的数字a, b,构成串ab;
2.取串最后的两位数字相加,将和写在串的最后面。
上面du熊向你展示的串就是取a = b = 1构造出来的串。
显然,步骤1之后不停地进行步骤2,数字串可以无限扩展。现在,du熊希望知道串的第n位是什么数字。

wayne 发表于 2012-12-13 21:09:49

猜想,不管a,b是什么开始的,最终都构成一个周期重复性的数字串.

wayne 发表于 2012-12-13 21:17:37

不是猜想,是必然的.
总共也就100种情况.可以用程序穷举验证.Flatten;
   NestWhile[(xx[[#[[-2]] + 1, #[[-1]] + 1]] = 1; Join[#, IntegerDigits]]]) &, {i, j}, xx[[#[[-2]] + 1, #[[-1]] + 1]] == 0 &]}, {i, 0, 9}, {j, 0, 9}], 1]

wayne 发表于 2012-12-13 22:22:15


{0,0}        {0,0,0}
{0,1}        {0,1,1,2,3,5,8,1,3,4,7,1,1}
{0,2}        {0,2,2,4,6,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{0,3}        {0,3,3,6,9,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{0,4}        {0,4,4,8,1,2,3,5,8,1,3,4,7,1,1,2}
{0,5}        {0,5,5,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{0,6}        {0,6,6,1,2,3,5,8,1,3,4,7,1,1,2}
{0,7}        {0,7,7,1,4,5,9,1,4}
{0,8}        {0,8,8,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{0,9}        {0,9,9,1,8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{1,0}        {1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{1,1}        {1,1,2,3,5,8,1,3,4,7,1,1}
{1,2}        {1,2,3,5,8,1,3,4,7,1,1,2}
{1,3}        {1,3,4,7,1,1,2,3,5,8,1,3}
{1,4}        {1,4,5,9,1,4}
{1,5}        {1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{1,6}        {1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{1,7}        {1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{1,8}        {1,8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{1,9}        {1,9,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{2,0}        {2,0,2,2,4,6,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{2,1}        {2,1,3,4,7,1,1,2,3,5,8,1,3}
{2,2}        {2,2,4,6,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{2,3}        {2,3,5,8,1,3,4,7,1,1,2,3}
{2,4}        {2,4,6,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{2,5}        {2,5,7,1,2,3,5,8,1,3,4,7,1,1,2}
{2,6}        {2,6,8,1,4,5,9,1,4}
{2,7}        {2,7,9,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{2,8}        {2,8,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{2,9}        {2,9,1,1,2,3,5,8,1,3,4,7,1,1}
{3,0}        {3,0,3,3,6,9,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{3,1}        {3,1,4,5,9,1,4}
{3,2}        {3,2,5,7,1,2,3,5,8,1,3,4,7,1,1,2}
{3,3}        {3,3,6,9,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{3,4}        {3,4,7,1,1,2,3,5,8,1,3,4}
{3,5}        {3,5,8,1,3,4,7,1,1,2,3,5}
{3,6}        {3,6,9,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{3,7}        {3,7,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{3,8}        {3,8,1,1,2,3,5,8,1,3,4,7,1,1}
{3,9}        {3,9,1,2,3,5,8,1,3,4,7,1,1,2}
{4,0}        {4,0,4,4,8,1,2,3,5,8,1,3,4,7,1,1,2}
{4,1}        {4,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{4,2}        {4,2,6,8,1,4,5,9,1,4}
{4,3}        {4,3,7,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{4,4}        {4,4,8,1,2,3,5,8,1,3,4,7,1,1,2}
{4,5}        {4,5,9,1,4,5}
{4,6}        {4,6,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{4,7}        {4,7,1,1,2,3,5,8,1,3,4,7}
{4,8}        {4,8,1,2,3,5,8,1,3,4,7,1,1,2}
{4,9}        {4,9,1,3,4,7,1,1,2,3,5,8,1,3}
{5,0}        {5,0,5,5,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{5,1}        {5,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{5,2}        {5,2,7,9,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{5,3}        {5,3,8,1,1,2,3,5,8,1,3,4,7,1,1}
{5,4}        {5,4,9,1,3,4,7,1,1,2,3,5,8,1,3}
{5,5}        {5,5,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{5,6}        {5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{5,7}        {5,7,1,2,3,5,8,1,3,4,7,1,1,2}
{5,8}        {5,8,1,3,4,7,1,1,2,3,5,8}
{5,9}        {5,9,1,4,5,9}
{6,0}        {6,0,6,6,1,2,3,5,8,1,3,4,7,1,1,2}
{6,1}        {6,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{6,2}        {6,2,8,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{6,3}        {6,3,9,1,2,3,5,8,1,3,4,7,1,1,2}
{6,4}        {6,4,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{6,5}        {6,5,1,1,2,3,5,8,1,3,4,7,1,1}
{6,6}        {6,6,1,2,3,5,8,1,3,4,7,1,1,2}
{6,7}        {6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{6,8}        {6,8,1,4,5,9,1,4}
{6,9}        {6,9,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{7,0}        {7,0,7,7,1,4,5,9,1,4}
{7,1}        {7,1,8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{7,2}        {7,2,9,1,1,2,3,5,8,1,3,4,7,1,1}
{7,3}        {7,3,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{7,4}        {7,4,1,1,2,3,5,8,1,3,4,7,1,1}
{7,5}        {7,5,1,2,3,5,8,1,3,4,7,1,1,2}
{7,6}        {7,6,1,3,4,7,1,1,2,3,5,8,1,3}
{7,7}        {7,7,1,4,5,9,1,4}
{7,8}        {7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{7,9}        {7,9,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{8,0}        {8,0,8,8,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{8,1}        {8,1,9,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{8,2}        {8,2,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{8,3}        {8,3,1,1,2,3,5,8,1,3,4,7,1,1}
{8,4}        {8,4,1,2,3,5,8,1,3,4,7,1,1,2}
{8,5}        {8,5,1,3,4,7,1,1,2,3,5,8,1,3}
{8,6}        {8,6,1,4,5,9,1,4}
{8,7}        {8,7,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{8,8}        {8,8,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{8,9}        {8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{9,0}        {9,0,9,9,1,8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{9,1}        {9,1,1,0,1,1,2,3,5,8,1,3,4,7,1,1}
{9,2}        {9,2,1,1,2,3,5,8,1,3,4,7,1,1}
{9,3}        {9,3,1,2,3,5,8,1,3,4,7,1,1,2}
{9,4}        {9,4,1,3,4,7,1,1,2,3,5,8,1,3}
{9,5}        {9,5,1,4,5,9,1,4}
{9,6}        {9,6,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{9,7}        {9,7,1,6,7,1,3,4,7,1,1,2,3,5,8,1,3}
{9,8}        {9,8,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}
{9,9}        {9,9,1,8,9,1,7,8,1,5,6,1,1,2,3,5,8,1,3,4,7,1,1}

chyanog 发表于 2012-12-13 23:07:58

不是猜想,是必然的.
总共也就100种情况.可以用程序穷举验证.Flatten;
   NestWhile[(xx[[#[[-2]] + 1, #[[-1]] + 1]] = 1; Join[#, IntegerDigits]]]) &, {i, j}, xx[[#[[-2]] + 1, #[[-1]] +...
wayne 发表于 2012-12-13 21:17 http://bbs.emath.ac.cn/images/common/back.gif

厉害!再问个问题,用Join是不是比AppendTo更好呢

chyanog 发表于 2012-12-13 23:40:14

python用reduce(更像Fold)模仿Mathematica的Nest
intDigits=lambda n: map(int, str(n))
print reduce(lambda x,y: x+intDigits(sum(x[-2:])), range(10), )

wayne 发表于 2012-12-14 10:54:54

AppendTo和Join的差别可以根据在文档中的路径看得出来
Mathematica > Core Language > Defining Variables and Functions > Assignments > AppendTo
Mathematica > Core Language > Expressions > Structural Operations on Expressions > Join
一个是属于赋值性质的,是要修改原值的, 一个是对结构的操作.

wayne 发表于 2012-12-14 11:09:13

6# chyanog
:b:
我一定要抽个时间深入学一下Python,这语言挺不错的.

郭先抢 发表于 2012-12-14 13:23:05

这个题目还真有些意思,matlab应该也能干这个活

郭先抢 发表于 2012-12-14 13:23:55

其实也就是双重循环,然后再加上一个子函数
页: [1] 2 3 4
查看完整版本: 百度之星的一道与斐波那契数列有关的题