斐波那契数列若干项的和
数串(1)——0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,0=0,
1=1,
2=2,
3=3,
4=1+3,
5=5,
6=1+5,
7=2+5,
8=8,
9=1+8,
10=2+8,
11=3+8,
12=1+3+8,
13=13,
14=1+13,
15=2+13,
16=3+13,
17=1+3+13,
18=5+13,
19=1+5+13,
20=2+5+13,
21=21,
22=1+21,
23=2+21,
24=3+21,
25=1+3+21,
26=5+21,
27=1+5+21,
28=2+5+21,
29=8+21,
30=1+8+21,
31=2+8+21,
32=3+8+21,
33=1+3+8+21,
34=34,
35=1+34,
36=2+34,
37=3+34,
38=1+3+34,
39=5+34,
40=1+5+34,
41=2+5+34,
42=8+34,
43=1+8+34,
44=2+8+34,
45=3+8+34,
46=1+3+8+34,
47=13+34,
48=1+13+34,
49=2+13+34,
50=3+13+34,
51=1+3+13+34,
52=5+13+34,
53=1+5+13+34,
54=2+5+13+34,
55=1,
56=1+55,
57=2+55,
58=3+55,
59=1+3+55,
60=5+55,
得到数串(2)——1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 2, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 5,
a(1)=0=0,
a(2)=4=1+3,
a(3)=12=1+3+8,
a(4)=33=1+3+8+21,
a(5)=88=1+3+8+21+55,
a(6)=232=1+3+8+21+55+144,
a(7)=609=1+3+8+21+55+144+377,
a(8)=1596,
a(9)=4180,
得到数串(3)——0, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, ——是这串数吗?
求助:是这串数吗? A027941
a(n) = Fibonacci(2*n + 1) - 1.
0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, 514228, 1346268, 3524577, 9227464, 24157816, 63245985, 165580140, 433494436, 1134903169, 2971215072, 7778742048, 20365011073, 53316291172, 139583862444, 365435296161, 956722026040
Also: smallest number not writeable as the sum of fewer than n positive Fibonacci numbers. E.g., a(5)=88 because it is the smallest number that needs at least 5 Fibonacci numbers: 88 = 55 + 21 + 8 + 3 + 1. - Johan Claes, Apr 19 2005 In general, a(n) is the sum of n positive Fibonacci numbers as a(n) = Sum_{i=1..n} A000045(2*i). See A001076 when negative Fibonacci numbers can be included in the sum. - Mike Speciner, Sep 24 2023
Except for first term, numbers a(n) that set a new record in the number of Fibonacci numbers needed to sum up to n. Position of records in sequence A007895. - Ralf Stephan, May 15 2005 northwolves 发表于 2025-7-28 06:22
A027941
a(n) = Fibonacci(2*n + 1) - 1.
简单!丢了!换一串。
Table + Sin + Sin)^(2 n - 1) ==A*Sin^(2 n - 1) + B*Sin^(2 n - 1) + Sin^(2 n - 1)}, {A, B}, PositiveIntegers], {n, 9}]
n=1, A(1)=1, B(1)=1,
n=2, A(2)=46, B(2)=10,
n=3, A(3)=1156, B(3)=76,
n=4, A(4)=26440, B(4)=568,
n=5, A(5)=594352, B(5)=4240,
n=6, A(6)=13318240, B(6)=31648,
n=7, A(7)=298263616, B(7)=236224,
n=8, A(8)=6678960256, B(8)=1763200,
n=9, A(9)=149557916416, B(9)=13160704,
B(n)=1, 10, 76, 568, 4240, 31648, 236224, 1763200, 13160704, 98232832, 733219840, 5472827392, 40849739776, 304906608640, 2275853910016, ——A107903——Generalized NSW numbers.——条文没我们的有意义。
A(n)=1, 46, 1156, 26440, 594352, 13318240, 298263616, 6678960256, 149557916416, 3348948866560, 74990693573632, 1679214509639680, 37601483354976256,——OEIE就没有了。
固定n, 在A(n), B(n)有解的前提下,C(n)表示可以取到的最大值。
Table + Sin + Sin)^(2 n - 1) ==A*Sin^(2 n - 1) + B*Sin^(2 n - 1) + C*Sin^(2 n - 1)}, {A, B, C}, PositiveIntegers], {n, 3}]
C(n)=1, 6, 37, 207, 1161, 6504, 36410, 203826, 1141037, 6387614, 35758350,——电脑罢工了——好不容易搞了这么几个————连我也找不到通项公式。 $A107903(n)=\lfloor 2^{n-2}\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^{n-1}\rfloor$ A(n)=1, 46, 1156, 26440, 594352, 13318240, 298263616, 6678960256, 149557916416, 3348948866560, 74990693573632, 1679214509639680, 37601483354976256,——OEIE就没有了。
-----------------------
$A(n)=\frac{6^n}{12}\left(\left(\sqrt{3}+3\right) \left(2-\sqrt{3}\right)^n+\left(3-\sqrt{3}\right) \left(\sqrt{3}+2\right)^n\right)-2^{2 n-1}$ Table + Sin + Sin)^(2 n - 1) ==A*Sin^(2 n - 1) + B*Sin^(2 n - 1) + C*Sin^(2 n - 1)}, {A, B, C}, PositiveIntegers], {n, 3}]
C(n)=1, 6, 37, 207, 1161, 6504, 36410, 203826, 1141037, 6387614, 35758350,——电脑罢工了——好不容易搞了这么几个————连我也找不到通项公式。
---------------------------------------
$(\frac{3}{2}+\frac{\sqrt3}{2})^{2n-1}=A*(frac{1}{2})^{2n-1}+B*(frac{\sqrt3}{2})^{2n-1}+C}$
显然B为定值,C为左式取整: $C_n=\lfloor\frac{ \left(3+\sqrt{3}\right)^{2 n-1}}{4^n}\rfloor$ 继续骚扰。
Table + Sin + Sin)^(2 n + 1) == A*Sin^(2 n + 1) + B*Sin^(2 n + 1) + C*Sin^(2 n + 1)}, {A, B, C}, PositiveIntegers, 1], {n, 16}, {k, 3, 6}]
{{{A -> 7, B -> 1, C -> 2}},{{A -> 19, B -> 7, C -> 1}}, {{A -> 4,B -> 2,C -> 15}}, {{A -> 6,B -> 10,C -> 6}}},
{{{A -> 31, B -> 1, C -> 2}}, {{A -> 28, B -> 41, C -> 204}}, {{A -> 11, B -> 28, C -> 94}}, {{A -> 1156, B -> 76,C -> 1}}},
{{{A -> 127, B -> 1, C -> 2}}, {{A -> 28, B -> 239, C -> 2676}}, {{A -> 29, B -> 28, C -> 814}}, {{A -> 3528, B -> 568, C -> 180}}},
{{{A -> 511, B -> 1, C -> 2}}, {{A -> 28, B -> 1393, C -> 31492}}, {{A -> 76, B -> 28, C -> 5749}}, {{A -> 14256, B -> 4240, C -> 1134}}},
{{{A -> 2047, B -> 1, C -> 2}}, {{A -> 28, B -> 8119, C -> 367396}}, {{A -> 199, B -> 28, C -> 39574}}, {{A -> 55392, B -> 31648, C -> 6477}}},
{{{A -> 8191, B -> 1, C -> 2}}, {{A -> 28, B -> 47321, C -> 4282980}}, {{A -> 521, B -> 28, C -> 271414}}, {{A -> 222272, B -> 236224, C -> 36383}}},
{{{A -> 32767, B -> 1, C -> 2}}, {{A -> 28, B -> 275807, C -> 49926372}}, {{A -> 1364, B -> 28, C -> 1860469}}, {{A -> 907392, B -> 1763200, C -> 203799}}},
{{{A -> 131071, B -> 1, C -> 2}}, {{A -> 28, B -> 1607521, C -> 581984740}}, {{A -> 3571, B -> 28, C -> 12752014}}, {{A -> 3584768, B -> 13160704, C -> 1141010}}},
{{{A -> 524287, B -> 1, C -> 2}}, {{A -> 28, B -> 9369319, C -> 6784111588}},{{A -> 9349, B -> 28, C -> 87403774}}, {{A -> 14177792, B -> 98232832, C -> 6387587}}},
{{{A -> 2097151, B -> 1, C -> 2}}, {{A -> 28, B -> 54608393, C -> 79081400292}}, {{A -> 24476, B -> 28, C -> 599074549}}, {{A -> 57074688, B -> 733219840, C -> 35758323}}},
{{{A -> 8388607, B -> 1, C -> 2}}, {{A -> 28, B -> 318281039, C -> 921840357348}}, {{A -> 64079, B -> 28, C -> 4106118214}}, {{A -> 232343552, B -> 5472827392, C -> 200177942}}},
{{{A -> 33554431, B -> 1, C -> 2}}, {{A -> 28, B -> 1855077841, C -> 10745758687204}}, {{A -> 167761, B -> 28, C -> 28143753094}}, {{A -> 912699392, B -> 40849739776, C -> 1120611503}}},
{{{A -> 134217727, B -> 1, C -> 2}}, {{A -> 28, B -> 10812186007, C -> 125261742817252}}, {{A -> 439204, B -> 28, C -> 192900153589}}, {{A -> 3675414528, B -> 304906608640, C -> 6273268722}}},
{{{A -> 536870911, B -> 1, C -> 2}}, {{A -> 28, B -> 63018038201, C -> 1460157879058404}}, {{A -> 1149851, B -> 28, C -> 1322157322174}}, {{A -> 14684798976, B -> 2275853910016, C -> 35118236526}}},
{{{A -> 2147483647, B -> 1, C -> 2}}, {{A -> 28, B -> 367296043199, C -> 17020847577432036}}, {{A -> 3010349, B -> 28, C -> 9062201101774}}, {{A -> 57985236992, B -> 16987204845568, C -> ,196594564607}}},
{{{A -> 8589934591, B -> 1, C -> 2}}, {{A -> 28, B -> 2140758220993, C -> 198409539412951012}}, {{A -> 7881196, B -> 28, C -> 62113250390389}}, {{A -> 240222666752, B -> 126794223124480, C -> 1100551355531}}}}
这里出现了12个数字串——其中数串(B4)=A107903——可惜数串(A4), (C4)就这么也找不到通项公式了。
数串(A1)=7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287,——a(n) = 5*a(n-1) - 4*a(n-2)。
数串(B1)
数串(C1)
数串(A2)
数串(B2)=7, 41, 239, 1393, 8119, 47321, 275807, 1607521, 9369319,——a(n) = 6*a(n-1) - a(n-2)。
数串(C2)=1, 204, 2676, 31492, 367396, 4282980, 49926372, 581984740,——a(n) = 13*a(n-1) - 16*a(n-1) + 4*a(n-2)。
数串(A3)=4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079,167761,——a(n) = 3*a(n-1) - a(n-2)。
数串(B3)
数串(C3)=15, 94, 814, 5749, 39574, 271414, 1860469, 12752014, 87403774,——a(n) = 8*a(n-1) - 8*a(n-1) + a(n-2)。
数串(A4)=6, 1156, 3528, 14256, 55392, 222272, 907392, 3584768, 14177792, 57074688, 232343552, 912699392, 3675414528, 14684798976, 57985236992, 240222666752,——?
数串(B4)=10, 76, 568, 4240, 31648, 236224, 1763200, 13160704, 98232832,——a(n) = 8*a(n-1) - 4*a(n-2)——A107903——也就是我们的4#。
数串(C4)=180, 1134, 6477, 36383, 203799, 1141010, 6387587, 35758323, 200177942, 1120611503, 6273268722, 35118236526, 196594564607, 1100551355531,——?
页:
[1]