請教一不等式
想了幾天都沒什麼頭緒已知 \(a, b, c > 0\),求证:
\[
\frac{2a^{2}+b^{2}-3c^{2}}{3c} + \frac{a^{2}-3b^{2}+2c^{2}}{3b} + \frac{-3a^{2}+2b^{2}+c^{2}}{3a} \geq \frac{b(a-c)}{a+2b} + \frac{c(b-a)}{b+2c} + \frac{a(c-b)}{c+2a}
\]
\(\because \dfrac{2a^2+b^2-3c^2}{3c}=\dfrac{2a^2+b^2}{3c}-c,\qquad \dfrac{b(a-c)}{a+2b}+c=\dfrac{ab+bc+ca}{a+2b}\)
\(\therefore\) 原式等价于:\ 我將它轉化為
設a,b,c>0,證明:(a+b+c)/(ab+bc+ca)>=1/(a+2b)+1/(b+2c)+1/(c+2a)
證到後面不等號相反了...:(
易证:\(\D \frac{1}{a}+\frac{2}{b}\geq\frac{9}{a+2b}\),注:可源自权方和不等式 \(\D \frac{1^2}{a}+\frac{2^2}{2b}\geq\frac{(1+2)^2}{a+2b}\) ,当且仅当 \(a=b\) 时等号成立
同理,\(\D \frac{1}{b}+\frac{2}{c}\geq\frac{9}{b+2c}, \quad \frac{1}{c}+\frac{2}{a}\geq\frac{9}{c+2a}\)
\(\D \therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
再结合 2# 的结果,看能否继续下去,
可能需用到排序不等式
Cauchy-Schwarz不等式 Titu 引理:
\(\D\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge a+b+c\)
两边加上:\(\D\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\)
\(\D\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+2\left(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\right)\ge a+b+c+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\)
右边(Cauchy-Schwarz不等式、4#):
\(\D=\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge \left(ab+bc+ca\right)\left\)
参考2# 综合 2#、4# 和 5# 给出完整证明过程如下:
【证明】
由Cauchy-Schwarz不等式 Titu 引理:
\(\sum{\frac{x_i^2}{y_i}}\ge\frac{(\sum{x_i})^2}{\sum{y_i}}\tag{1}\)
得:
\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c\tag{2}\)
两边同时加上:\(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\)
左边:\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}=\frac{2b^2+c^2}{a}+\frac{2c^2+a^2}{b}+\frac{2a^2+b^2}{c}\)
右边:\(a+b+c++\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}=(a^2+b^2+c^2)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
即:\(\frac{2b^2+c^2}{a}+\frac{2c^2+a^2}{b}+\frac{2a^2+b^2}{c}\ge(a^2+b^2+c^2)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\tag{3}\)
令:\(u=[\begin{matrix}a&b&c\end{matrix}]^T\),\(v=[\begin{matrix}b&c&a\end{matrix}]^T\),则:\(|u\cdot v|\le|u|\cdot|v|\)
即:\(ab+bc+ca\le a^2+b^2+c^2\tag{4}\)
由 (1) 式得 \(\frac{1}{m}+\frac{2}{n}=\frac{1}{m}+\frac{1}{n}+\frac{1}{n}\ge\frac{(1+1+1)^2}{m+2n}=\frac{9}{m+2n}\)
因而有:\(\frac{1}{a}+\frac{2}{b}\ge\frac{9}{a+2b}\)、\(\frac{1}{b}+\frac{2}{c}\ge\frac{9}{b+2c}\) 和 \(\frac{1}{c}+\frac{2}{a}\ge\frac{9}{c+2a}\)
三式相加得:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a})\tag{5}\)
将 (4) 式和 (5) 式应用到 (3) 式右边得:\((a^2+b^2+c^2)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\ge3(ab+bc+ca)(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a})\)
因而 (3) 式成为:\(\frac{2b^2+c^2}{3a}+\frac{2c^2+a^2}{3b}+\frac{2a^2+b^2}{3c}\ge\frac{ab+bc+ca}{a+2b}+\frac{ab+bc+ca}{b+2c}+\frac{ab+bc+ca}{c+2a}\tag{6}\)
两边同时减去 \(a+b+c\) 化简后即得命题不等式。
更自然的思路
由权方和不等式,可得:\(\D \frac{a^2}{c}+\frac{c^2}{b}+\frac{b^2}{a} \geq a+b+c\)由排序不等式,可得:\(\D \frac{b^2}{c}+\frac{a^2}{b}+\frac{c^2}{a} \geq \frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}\)
由上述两个不等式,以及4# 的结果,可得:
\[\begin{split}2\left(\frac{a^2}{c}+\frac{c^2}{b}+\frac{b^2}{a}\right)+\left(\frac{b^2}{c}+\frac{a^2}{b}+\frac{c^2}{a}\right)
&\geq 2(a+b+c)+\left(\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}\right) \\
&=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \\
&\geq 3\left(ab+bc+ca\right)\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\end{split} \label{7.1}\tag{7.1}\]
再由 2# 的推理,可知原不等式成立,等号当且仅当 \(a=b=c\) 时成立。
其中,\(\eqref{7.1}\) 式中的等式 \(\D \left(a b+b c+c a\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) = 2(a+b+c)+\left(\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}\right)\) 起了关键作用,且上下承接比较自然。 感謝樓上幾位的解答,我研究一下
页:
[1]