用下面这个式子貌似更方便些,√(1+√2)能写成两项的,但还是嵌套的根式,
这是n-2-2式在n=2时的特殊例子,
在维基百科已经说明了由x=√2[√a+√(a-b)]可得出这样的形式。 n-2-4式大致上已破解。
求√(10+6√2+5√3+4√6)
p=√(49+20√6)=5+2√6
x=√(30+12√6)=2√3+3√2
√(10+6√2+5√3+4√6)=(2√3+3√2+√(10+4√6))/2=(2+3√2+2√3+√6)/2 现在$(55+\frac{81}{2}\sqrt{2}+33\sqrt{3}+\frac{45}{2}\sqrt{6})^(1/3)$也可解了,盼望能有更广义的解法 FullSimplify+33Sqrt+45/2 Sqrt)^(1/3)]],ComplexityFunction->(StringLength@ToString@#&)]
`\sqrt{\frac{3}{2}}+\sqrt{3}+\frac{3}{\sqrt{2}}+1` 请教楼主:
√(3+√2)能化简为两项吗?
什么样的不能,而什么样的可以? 葡萄糖 发表于 2014-4-26 12:44
请教楼主:
√(3+√2)
\(\sqrt{3+\sqrt{2}}\)能化简为两项吗?
什么样的不能,而什么样的可以?
\[\sqrt{a\pm\sqrt{b}}=\frac{\sqrt{a+\sqrt{a^2-b}}\pm\sqrt{a-\sqrt{a^2-b}}}{\sqrt{2}}\]
2005上海交通大学自主招生冬令营数学试卷第五题:
\(\sqrt{2\sqrt{3}-3}=\sqrt{\frac{3\sqrt{3}}{2}}-\sqrt{\frac{\sqrt{3}}{2}}\)不适用\(\sqrt{a\pm\sqrt{b}}=\frac{\sqrt{a+\sqrt{a^2-b}}\pm\sqrt{a-\sqrt{a^2-b}}}{\sqrt{2}}\)!
http://en.wikipedia.org/wiki/Nested_radical 本帖最后由 王守恩 于 2021-1-22 16:16 编辑
葡萄糖 发表于 2014-8-4 16:05
\[\sqrt{a\pm\sqrt{b}}=\frac{\sqrt{a+\sqrt{a^2-b}}\pm\sqrt{a-\sqrt{a^2-b}}}{\sqrt{2}}\]
2005上海 ...
1,\(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b})}\pm\sqrt{\frac{1}{2}(a-\sqrt{a^2-b})}\)可分为4个:
\(\sqrt{a+\sqrt{b}}=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b})}+\sqrt{\frac{1}{2}(a-\sqrt{a^2-b})}\ \ \ \ (1)\)
\(\sqrt{a-\sqrt{b}}=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b})}-\sqrt{\frac{1}{2}(a-\sqrt{a^2-b})}\ \ \ \ (2)\)
\(\sqrt{\sqrt{a}+b}=\sqrt{\frac{1}{2}(\sqrt{a}+\sqrt{a-b^2})}+\sqrt{\frac{1}{2}(\sqrt{a}-\sqrt{a-b^2})}\ \ \ \ (3)\)
\(\sqrt{\sqrt{a}-b}=\sqrt{\frac{1}{2}(\sqrt{a}+\sqrt{a-b^2})}-\sqrt{\frac{1}{2}(\sqrt{a}-\sqrt{a-b^2})}\ \ \ \ (4)\)
2,试题:\(\sqrt{2\sqrt{3}-3}=\sqrt{\sqrt{3}(2-\sqrt{3})}=\sqrt{\sqrt{3}}*\sqrt{\frac{4-2\sqrt{3}}{2}}=\sqrt{\sqrt{3}}*\frac{\sqrt{3}-1}{\sqrt{2}}=\sqrt{\frac{3\sqrt{3}}{2}}-\sqrt{\frac{\sqrt{3}}{2}}\)
3,1,2 都可以统一到\(a\pm2\sqrt{b}\)的算术平方根公式上来。 本帖最后由 王守恩 于 2021-11-18 11:36 编辑
王守恩 发表于 2021-1-22 10:41
1,\(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b})}\pm\sqrt{\frac{1}{2}(a-\sqrt{a^2-b})} ...
简单的才算方法。试题属于第4条。
试题:\(\sqrt{2\sqrt{3}-3\ \ }=\sqrt{\frac{1}{2}(4\sqrt{3}-2\sqrt{9}\ )\ \ }=\sqrt{\frac{1}{2}\ }*(3\sqrt{3}-\sqrt{3}\ )=\sqrt{\frac{3\sqrt{3}\ }{2}}-\sqrt{\frac{\sqrt{3}\ }{2}}\)
1,\(\sqrt{a+\sqrt{b\ }\ \ }=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b\ \ }\ )\ \ }+\sqrt{\frac{1}{2}(a-\sqrt{a^2-b\ \ }\ )\ \ }\)
2,\(\sqrt{a-\sqrt{b\ }\ \ }=\sqrt{\frac{1}{2}(a+\sqrt{a^2-b\ \ }\ )\ \ }-\sqrt{\frac{1}{2}(a-\sqrt{a^2-b\ \ }\ )\ \ }\)
3,\(\sqrt{\sqrt{a\ }+b\ }=\sqrt{\frac{1}{2}(\sqrt{a}+\sqrt{a-b^2\ }\ )\ }+\sqrt{\frac{1}{2}(\sqrt{a}-\sqrt{a-b^2\ }\ )\ }\)
4,\(\sqrt{\sqrt{a\ }-b\ }=\sqrt{\frac{1}{2}(\sqrt{a}+\sqrt{a-b^2\ }\ )\ }-\sqrt{\frac{1}{2}(\sqrt{a}-\sqrt{a-b^2\ }\ )\ }\)
1,2的约束条件:\(a>\sqrt{b}\),3,4的约束条件:\(\sqrt{a}>b\)
这个命令好像还不错
\[\sqrt{4 \sqrt{7}-\sqrt{105}}=\sqrt{\frac{5 \sqrt{7}}{2}}-\sqrt{\frac{3 \sqrt{7}}{2}}\]
ResourceFunction["RadicalDenest"]@Sqrt - Sqrt]
页:
1
[2]