一道填色问题
如图,有5X5的矩形框,现在在矩形框里选一些格子涂上颜色,这些涂过颜色的格子将未涂色的格子分开,使得未涂色的格子最多只能有3个格子相邻(包括横,竖和斜线部分)。问:一,必须在5X5矩形框里最少选多少格子涂上颜色才能达到要求?为什么?(以图中为例,有8个格子填了颜色才满足要求)
二,若是改成6X6矩形框呢?
----------------------------------------------------------------
如图,将一个5×5的网格涂成黄白二色,若要求每一行、每一列和每条长度超过3格的斜线上的连续白格串的长度不超过3格,问至少要求几个黄色格?
-------管理员hujunhua2014年1月4日17:15注。加此注后,跟帖中对主题描述不清的质疑将进行屏蔽或删除。 像五子棋一样,每行或每列或每斜行上面,最多连续的白色格子数不超过个, 这样理解是不是合适点。 LZC_314 发表于 2014-1-3 11:19
像五子棋一样,每行或每列或每斜行上面,最多连续的白色格子数不超过个, 这样理解是不是合适点。
差不多。即每行每列每斜线行不超过3个
如图,只需填7格即可。
至于6格不可的证明,大家不妨自己试一试。 看了第一页还是一头浆糊. 看到了第二页 LZC_314的回帖, 才彻底搞明白了.
说白了, 就是 不存在超过3个同色的格子 "连续共线"呗. wayne 发表于 2014-1-3 23:53
看了第一页还是一头浆糊. 看到了第二页 LZC_314的回帖, 才彻底搞明白了.
说白了, 就是 不存在超过3个同色 ...
是这样的。
现在13F已经给出了最少7格,只要证明了6格达不到要求就行了
要证明6格不够,篇幅还不算太长。用反证法,假定有一个合适的6格方案图G。
在图G中,行和列包含的黄格数分布都是{1,1,1,1,2}(不管顺序),
其中,黄格数为1的行,所含的唯一黄格必定位于列3,4,5. 所以黄格数为2的列必为列3,4 or 5
同样,黄格数为1的列,所含的唯一黄格必定位于行3,4,5. 所以荶格数为2的行必为行3,4 or 5
于是初步可得图1所示的结果:网格的4角必为白格,4边的中间带,即图中的4个灰色带各含一个黄格,剩下的2个黄格在中心九宫格待涂.
图1
列1与列5的黄格必定同行,否则,行3,4,5就会都包含4连白格(暂时),都需要待涂的黄格来分割,但只有2个待涂黄格了。
同理,行1与行5的黄格同列。
所以,将图1的灰幕揭开后,可能的图案有9种,合并那些对称重复的,不重复的有3种,如图2, 图3, 图4 。
在图2,3, 4 中,剩下待涂的两黄格位于灰色格内,无论如何都有斜线含连4白格。所以假设不成立,6格不够。
页:
[1]
2