wsc810 发表于 2014-1-27 18:49:32

如下不定方程有解的条件是什么

不定方程 $p=XY+YZ+XZ$
$p$是素数,在何种情况下,该不定方程有正整数解,如果允许$X,Y,Z$取负值,是否该不定方程总有解

Lwins_G 发表于 2014-1-27 20:19:49

本帖最后由 Lwins_G 于 2014-1-27 20:32 编辑

假设楼主提出的是如下两个问题:

I. 设`p`为一固定质数,问方程`p=xy+yz+zx`在`x,y,z \in \mathbb{Z}_+`时是否有解?
II. 设`p`为一固定质数,问方程`p=xy+yz+zx`在`x,y,z \in \mathbb{Z} \backslash \{0\}`时是否有解?

我们首先证明一个引理:
引理当`x,y,z \in \mathbb{Z}_+`时,给定正整数`n`,则当`n+1`为合数时`n=xy+yz+zx`有解。
证: 不妨设`n=ab\ (a,b>1)`,取`x=a-1,\,y=b-1,\,z=1`立得。Q.E.D.

现在用其来解决问题I,假设一质数`p_0`使得`p_0=xy+yz+zx`无解。根据引理必有`p_0+1`为一质数。于是唯一可能的情况仅有`p_0=2`,简单验证知满足要求。故而第一问的答案是
当且仅当`p=2`时无解。

在这个基础上,又由`2=2 \cdot 4 + 4 \cdot (-1) + (-1) \cdot 2`即知第二问的答案是
有解。
页: [1]
查看完整版本: 如下不定方程有解的条件是什么