zuijianqiugen 发表于 2014-5-8 17:07:40

实系四次方程有四个实根的条件

(1)已知实系四次方程:x4=ax2+bx+c有四个实根
(2)求系数a、b、c所满足的充要条件。

cn8888 发表于 2014-5-8 18:15:20

画出函数图形,f(x)=x^4-ax^2-bx-c
求导f'(x)=4x^3-2ax-b
,三个实根是x1 x2 x3 (x1<=x2<=x3)
f(x1)<=0
f(x2)>=0
f(x1)<=0
这就是充要条件

cn8888 发表于 2014-5-8 18:21:39

看你的样子是想求解四次方程
x4+dx2+d2/4=(a+d)x2+bx+(c+d2/4)
右边完全平方,判别式等于零
b2-4(a+d)(c+d2/4)=0
关于d的三次方程,求解出来就可以了,肯定至少有一个实根的
然后两边平方差就可以了

cn8888 发表于 2014-5-8 18:22:25

我看很难有显式表达,还是不要浪费时间了吧

cn8888 发表于 2014-5-8 18:30:52

Solving a quartic equation
http://en.wikipedia.org/wiki/Quartic_function

恭喜你了,原来还真的有显示表达式.

Nature of the roots
Given the general quartic equation
\(ax^4 + bx^3 + cx^2 + dx + e = 0\)
with real coefficients and \(a \ne 0\), the nature of its roots is mainly determined by the sign of its discriminant
\(\begin{split}\Delta\ =\ &256 a^3 e^3 - 192 a^2 b d e^2 - 128 a^2 c^2 e^2 + 144 a^2 c d^2 e - 27 a^2 d^4 \\
&+ 144 a b^2 c e^2 - 6 a b^2 d^2 e - 80 a b c^2 d e + 18 a b c d^3 + 16 a c^4 e \\
&- 4 a c^3 d^2 - 27 b^4 e^2 + 18 b^3 c d e - 4 b^3 d^3 - 4 b^2 c^3 e + b^2 c^2 d^2\end{split}\)
This may be refined by considering the signs of three other polynomials:
\(P = 8ac - 3b^2\)
such that \(\tfrac{P}{8a^2}\) is the second degree coefficient of the associated depressed quartic (see below);
\(\Delta_0 = c^2 - 3bd + 12ae\)
which is 0 if the quartic has a triple root; and
\(D = 64 a^3 e - 16 a^2 c^2 + 16 a b^2 c - 16 a^2 bd - 3 b^4\)
which is 0 if the quartic has two double roots.

The possible cases for the nature of the roots are as follows:
[*]If \(\Delta < 0\) then the equation has two real roots and two complex conjugate roots.
[*]If \(\Delta > 0\) then the equation's four roots are either all real or all complex.
[*]If \(P < 0\) and \(D < 0\) then all four roots are real and distinct.
[*]If \(P > 0\) or \(D > 0\) then there are two pairs of complex conjugate roots.
[*]If \(\Delta = 0\) then either the polynomial has a multiple root, or it is the square of a quadratic polynomial. Here are the different cases that can occur:
[*]If \(P < 0\) and \(D < 0\) and \(\scriptstyle \Delta_0 \neq 0\), there is a real double root and two real simple roots.
[*]If (\(P > 0\) and \(D \neq 0\)) or \(D > 0\), there is a real double root and two complex conjugate roots.
[*]If \(\scriptstyle \Delta_0 = 0\) and\( D \neq 0\), there is a triple root and a simple root, all real.
[*]If\( D = 0\), then:
[*]If \(P < 0\), there are two real double roots.
[*]If \(P > 0\), there are two complex conjugate double roots.
[*]If \(\scriptstyle \Delta_0 = 0\), all four roots are equal to \(-\tfrac{b}{4a}\)
There are some cases that do not seem to be covered, but they can not occur. For example \(\scriptstyle \Delta > 0\), \(P = 0\) and \(D ≤ 0\) is not one of the cases. However if \(\scriptstyle \Delta > 0\) and \(P = 0\) then \(D > 0\) so this combination is not possible.

zuijianqiugen 发表于 2014-5-8 19:17:19

cn8888 发表于 2014-5-8 18:30
Solving a quartic equation
http://en.wikipedia.org/wiki/Quartic_function



还有更漂亮的解答。参见:http://zuijianqiugen.blog.163.com/blog/static/1265240622011112903052939/

cn8888 发表于 2014-5-9 12:17:26

zuijianqiugen 发表于 2014-5-8 19:17
还有更漂亮的解答。参见:http://zuijianqiugen.blog.163.com/blog/static/1265240622011112903052939/

不厚道呀,你自己都知道了答案然后到这里问,害我帮你找资料

zuijianqiugen 发表于 2014-5-31 21:28:19

cn8888 发表于 2014-5-9 12:17
不厚道呀,你自己都知道了答案然后到这里问,害我帮你找资料

免费教你学学知识、长长见识,你应该感谢我才对呀!

wayne 发表于 2014-6-1 10:01:46

类似题目论坛有提及过。
Sturm's_theorem
http://en.wikipedia.org/wiki/Sturm's_theorem
http://zh.wikipedia.org/wiki/施图姆定理

葡萄糖 发表于 2014-6-21 17:46:44

本帖最后由 葡萄糖 于 2014-6-21 18:49 编辑

§3结式
12.3.1    两个一元多项式的结式的定义
考虑域 上的多项式
\[\begin{gathered}
f(x) = {a_0}{x^n} + {a_1}{x^{n - 1}} +\cdots+ {a_n} \\
g(x) = {b_0}{x^m} + {b_1}{x^{m - 1}} +\cdots+ {b_m}\\
\end{gathered} \]
由给定 上多项式
\[\begin{gathered}
{q_1}(x) = {y_1}{x^{n - 1}} + {y_2}{x^{n - 2}} +\cdots+ {y_n} \\
{q_2}(x) = {x_1}{x^{m - 1}} + {x_2}{x^{m - 2}} +\cdots+ {x_m} \\
\end{gathered} \]       
这里系数 是待定的。那么, 的充分必要条件是下面等式成立:
\[\left\{ \begin{gathered}
{a_0}{x_1}{\text{                                  = }}{b_0}{y_1},\\
{a_1}{x_1} + {a_0}{x_2}{\text{                        = }}{b_1}{y_1} + {b_0}{y_2}, \\
{a_2}{x_1} + {a_1}{x_2} + {a_0}{x_3}{\text{            = }}{b_2}{y_1} + {b_1}{y_2} + {b_0}{y_3},\\
   \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots   \\
{\text{               }}{a_n}{x_{m - 1}} + {a_{n - 1}}{x_m} = {\text{            }}{b_m}{y_{n - 1}} + {b_{m - 1}}{y_n}, \\
{\text{                                 }}{a_n}{x_m} = {\text{                     }}{b_m}{y_n}.\\
\end{gathered}\right.\left( 1 \right)\]

\[R(f,g) = \left| {\begin{array}{*{20}{r}}
{{a_0}}&{{a_1}}&{{a_2}}& \cdots &{{a_n}}&0& \cdots &0 \\
0&{a{}_0}&{{a_1}}&{{a_2}}& \cdots &{{a_n}}& \cdots &0 \\
   \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\
0&0& \cdots &{{a_0}}&{{a_1}}&{{a_2}}& \cdots &{{a_n}} \\
{{b_0}}&{{b_1}}&{{b_2}}& \cdots &{{b_m}}&0& \cdots &0 \\
0&{{b_0}}&{{b_1}}&{{b_2}}& \cdots &{{b_m}}& \cdots &0 \\
   \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\
0&0& \cdots &{{b_0}}&{{b_1}}&{{b_2}}& \cdots &{{b_m}}
\end{array}} \right|\]
其中${a_i}$有$m$行,其中${b_i}$有$n$行,称$R(f,g)$为多项式$f,g$的结式。
命题两个一元多项式的结式等于0当且仅当此二多项式不互素或首相系数都为零。
证明设两个一元多项式为
\[\begin{gathered}
f(x) = {a_0}{x^n} + {a_1}{x^{n - 1}} +\cdots+ {a_n},{\text{    (}}n \geqslant 1) \\
g(x) = {b_0}{x^m} + {b_1}{x^{m - 1}} +\cdots+ {b_m}{\text{      (}}m \geqslant 1) \\
\end{gathered} \]
充分性   若${a_0} = {b_0} = 0$,则显见有$R(f,g) = 0$。今设${a_0},{b_0}$不全为零,不妨设${a_0} \ne 0$,且$f$与$g$不互素,即有公因式$d(x)$,$\deg d(x) \geq 1$。于是
$f = d{q_1},g = d{q_2}$。因$f \ne 0$,故${q_1} \ne 0$,且$\deg {q_1} < n$。若$g \ne 0$,则$\deg {q_2} < m$;若$g = 0$,则令${q_2} = 0{x^{m - 1}} + 0{x^{m - 2}} +\cdots+ 0$。易知此时$f{q_2} = g{q_1}$,且${q_1} \ne 0$,故齐次线性方程组(1)有非零解,于是
$R(f,g) = 0$
必要性   若$R(f,g) = 0$,而${a_0},{b_0}$不全为零,我们来证明$f$与$g$不互素。因为此时齐次线性方程组(1)有非零解。故存在不全为零的${q_1}(x),{q_2}(x) \in K$,使$f{q_2} = g{q_1}$,而且当${q_1}$(或${q_2}$)不为零时,其次数小于$n$(小于$m$)。不妨设${a_0} \ne 0$,即$f \ne 0$。若$g = 0$,则$f,g$显见不互素。今设$g \ne 0$。因$f|g{q_1}$,若$(f,g) = 1$,则有$f|{q_1}$,与$\deg {q_1} < n$矛盾。证毕。

12.3.3   用一个多项式与它的微商的\(\color{red}{结式}\)表达该多项式的\(\color{red}{判别式}\)
现在设
\
根据前面对其判别式的定义,我们有
\
因为
\

\
以$x = {\alpha _i}$代入上式,得
\[f'({\alpha _i}) = {a_0}\prod\limits_{\begin{gathered}
j = 1 \\
j \ne i \\
\end{gathered}
}^n {({\alpha _i} - {\alpha _j})} \]
\[\prod\limits_{i = 1}^n {f'({\alpha _i}) = a_0^n\prod\limits_{\begin{gathered}
i,j = 1\\
i \ne j \\
\end{gathered}
}^n {({\alpha _i} - {\alpha _j}) = {{( - 1)}^{\frac{{n(n - 1)}}{2}}}a_0^n\prod\limits_{1 \leqslant i \leqslant j \leqslant n} {{{({\alpha _j} - {\alpha _i})}^2}} } } \]
从而有
\[\begin{gathered}
R(f,f') = a_0^{n - 1}\prod\limits_{i = 1}^n {f'({\alpha _i})}\\
{\text{                = }}{( - 1)^{\frac{{n(n - 1)}}{2}}}a_0^{2n - 1}\prod\limits_{1 \leqslant i \leqslant j \leqslant n} {{{({\alpha _j} - {\alpha _i})}^2}}   \\
{\text{                = }}{( - 1)^{\frac{{n(n - 1)}}{2}}}{a_0}D(f)\\
\end{gathered} \]
\[\begin{gathered}
R(f,f') = {( - 1)^{\frac{{n(n - 1)}}{2}}}{a_0}D(f)\\
\Longrightarrow \color{red}{D(f)={( - 1)^{\frac{{n(n - 1)}}{2}}}{a_0^{-1}}R(f,f')}
\end{gathered} \]
这就是$f$的判别式与$R(f,f')$之间的关系式。
http://zh.wikipedia.org/wiki/判別式
页: [1] 2
查看完整版本: 实系四次方程有四个实根的条件