cn8888 发表于 2014-7-1 17:42:52

a^2+ab+b^2=c^2的整数解

a^2+ab+b^2=c^2的所有整数解
有通项公式吗?

cn8888 发表于 2014-7-1 17:44:44

比如
7,8,13是一组解答

mathe 发表于 2014-7-1 18:14:53

一般都是考虑对于哪些c有解

cn8888 发表于 2014-7-1 18:16:26

我给出mathematica的代码,能够找到一部分解答.
暴力求解
(*求整数解答*)
Do};(*调用reduce函数求解*)
If,(*如果解答存在的话*)
   outabc={a,b,c}/.out;(*去掉a->这类符号,只保留结果*)
   Map(*通过映射打印出所有解答*)
],
   {n,0,200}
]

求解结果.
{3,5,7}

{7,8,13}

{6,10,14}

{5,16,19}

{9,15,21}

{14,16,26}

{12,20,28}

{11,24,31}

{15,25,35}

{7,33,37}

{10,32,38}

{21,24,39}

{18,30,42}

{13,35,43}

{16,39,49}

{21,35,49}

{28,32,52}

{24,40,56}

{15,48,57}

{9,56,61}

{22,48,62}

{27,45,63}

{35,40,65}

{32,45,67}

{30,50,70}

{17,63,73}

{14,66,74}

{20,64,76}

{33,55,77}

{42,48,78}

{40,51,79}

{36,60,84}

{26,70,86}

{11,85,91}

{19,80,91}

{39,65,91}

{49,56,91}

{33,72,93}

{25,80,95}

{55,57,97}

{32,78,98}

{42,70,98}

{40,77,103}

{56,64,104}

{45,75,105}

{24,95,109}

{21,99,111}

{48,80,112}

{30,96,114}

{63,72,117}

{51,85,119}

{18,112,122}

{44,96,124}

{54,90,126}

{13,120,127}

{39,105,129}

{70,80,130}

{23,120,133}

{35,112,133}

{57,95,133}

{65,88,133}

{64,90,134}

{69,91,139}

{60,100,140}

{77,88,143}

{34,126,146}

{48,117,147}

{63,105,147}

{28,132,148}

{56,115,151}

{40,128,152}

{66,110,154}

{55,120,155}

{84,96,156}

{25,143,157}

{80,102,158}

{69,115,161}

{75,112,163}

{72,120,168}

{15,161,169}

{91,104,169}

{45,144,171}

{52,140,172}

{75,125,175}

{104,105,181}

{22,170,182}

{38,160,182}

{78,130,182}

{98,112,182}

{27,168,183}

{35,165,185}

{66,144,186}

{81,135,189}

{50,160,190}

{32,175,193}

{110,114,194}

{105,120,195}

{64,156,196}

{84,140,196}

{56,165,199}

cn8888 发表于 2014-7-1 18:20:26

再加一个限制条件吧,
如果a=0或者b=0,这个解答是平凡的,没有意义的.
同时限制c>0
以及由于对称,限制a<b
以及
a与b互质!

综上:
0<a<b
c>0
GCD=1
这是几个求解条件

cn8888 发表于 2014-7-1 18:23:55

cn8888 发表于 2014-7-1 18:20
再加一个限制条件吧,
如果a=0或者b=0,这个解答是平凡的,没有意义的.
同时限制c>0


在上面的条件限制下:
(*求整数解答*)
Do==1,{a,b,c},Integers]};(*调用reduce函数求解*)
If,(*如果解答存在的话*)
   outabc={a,b,c}/.out;(*去掉a->这类符号,只保留结果*)
   Map(*通过映射打印出所有解答*)
],
   {n,0,200}
]

求解结果如下:
{3,5,7}
{7,8,13}
{5,16,19}
{11,24,31}
{7,33,37}
{13,35,43}
{16,39,49}
{9,56,61}
{32,45,67}
{17,63,73}
{40,51,79}
{11,85,91}
{19,80,91}
{55,57,97}
{40,77,103}
{24,95,109}
{13,120,127}
{23,120,133}
{65,88,133}
{69,91,139}
{56,115,151}
{25,143,157}
{75,112,163}
{15,161,169}
{104,105,181}
{32,175,193}
{56,165,199}

northwolves 发表于 2014-7-1 18:28:54

\(\D a^2+ab+b^2=c^2 \implies \left(\frac a c\right)^2+\left(\frac a c\right)\left(\frac b c\right)+\left(\frac b c\right)^2=1\implies m^2+mn+n^2=1\)

令 \(n=km-1\),
可得到 \(m^2+m(km-1)+(km-1)^2=1\)

\((k^2+k+1)m^2-(2k+1)m=0\)

\(\D m=0;\ m=\frac{2k+1}{k^2+k+1}\)

northwolves 发表于 2014-7-1 18:30:02

对于$m=0$的情况,可得到一组通解$(0,k,k)$

cn8888 发表于 2014-7-1 18:30:50

cn8888 发表于 2014-7-1 18:23
在上面的条件限制下:

求解结果如下:

在上面的解答中,只有
{49, 91, 91, 133, 133, 169}
是合数
其中49与169是完全平方
91与133都是给出了两组解答

cn8888 发表于 2014-7-1 18:39:45

在c的可能解答中
{199, 211, 217, 217, 223, 229, 241, 247, 247, 259, 259, 271, 277, \
283, 301, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397}
不是素数的
{217, 217, 247, 247, 259, 259, 301, 301, 343, 361}
要么是两组解答,要么是立方数或者平方数
页: [1] 2
查看完整版本: a^2+ab+b^2=c^2的整数解