求 x^2/(( x^2-a)^2 + b^2) 的不定积分
\[ {\large\int} \frac{x^2}{\left(x^2-a\right)^2+b^2}\dif x \]尽量用不含虚数的式子来表示 \(\D\frac{{{\text{i}}\left(\sqrt { - a - {\text{i}}b} \arctan\left(\frac{x}{{\sqrt { - a - {\text{i}}b} }}\right) - \sqrt { - a + {\text{i}}b} \arctan\left(\frac{x}{{\sqrt { - a + {\text{i}}b} }}\right)\right)}}{{2b}}\)
只会mathematica求解 这种类型的不定积分,大概在2年前我就很熟悉了,下面我将展示求这类有理分式不定积分过程中"拆"和“凑”的技巧:
$$ \begin{align*} &\mathrel{\phantom{=}} \frac{x^2}{(x^2-a)^2+b^2}\dif x\\
&=\frac{1}{2}\frac{(x^2+\sqrt{a^2+b^2})+(x^2-\sqrt{a^2+b^2})}{x^4+a^2+b^2-2ax^2}\dif x\\
&=\frac{1}{2}\frac{1+\frac{\sqrt{a^2+b^2}}{x^2}}{(x-\frac{\sqrt{a^2+b^2}}{x^2})^2+2(\sqrt{a^2+b^2}-a)}\dif x
+\frac{1}{2}\frac{1-\frac{\sqrt{a^2+b^2}}{x^2}}{(x-\frac{\sqrt{a^2+b^2}}{x^2})^2+2(\sqrt{a^2+b^2}-a)}\dif x\\
&=\frac{1}{2}\frac{\dif(x-\frac{\sqrt{a^2+b^2}}{x})}{(x-\frac{\sqrt{a^2+b^2}}{x})^2+2(\sqrt{a^2+b^2}-a)}
+\frac{1}{2}\frac{\dif(x+\frac{\sqrt{a^2+b^2}}{x})}{(x+\frac{\sqrt{a^2+b^2}}{x})^2-2(\sqrt{a^2+b^2}+a)} \\
\end{align*}$$
最后一行两个式子是否特别眼熟?回忆积分公式$$\int \frac{\dif z}{z^2+c^2}=\frac{1}{c}\arctan\frac{z}{c}+C\\
\int \frac{\dif z}{z^2-c^2}=\frac{1}{2c}\ln\left|\frac{z-c}{z+c}\right|+C$$
因此$$\begin{align*}\tag{1}\int \frac{x^2}{(x^2-a)^2+b^2}\dif x = \frac{1}{2\sqrt{2(\sqrt{a^2+b^2}-a)}}\arctan \frac{x^2-\sqrt{a^2+b^2}}{\sqrt{2(\sqrt{a^2+b^2}-a)}\,x}+\frac{1}{4\sqrt{2(\sqrt{a^2+b^2}+a)}}\ln\left| \sqrt{\frac{x^2+\sqrt{a^2+b^2}-\sqrt{2(\sqrt{a^2+b^2}+a)}\,x}{x^2+\sqrt{a^2+b^2}+\sqrt{2(\sqrt{a^2+b^2}+a)}\,x}} \right|+C\end{align*}$$
这类技巧广泛用在可以通过代换化简为形如`\D \frac{1}{x^4+1}`、`\D\frac{1}{x^6+1}`、`\D\frac{1}{x^4\pm x^2+1}`等这类有理分式的的不定积分之中。
当然,若上面的有理分式的分子中若含有`x^2`项,那么可以通过倒代换`t=\D\frac{1}{x}`将分子化为常数,然后再使用上述方法。 这种积分的求出是必然的,只是步骤上的繁琐而已。 kastin 发表于 2014-7-26 15:25
这种类型的不定积分,大概在2年前我就很熟悉了,下面我将展示求这类有理分式不定积分过程中"拆"和“凑”的 ...
感谢分享:b:
这个对称拆分的方法好呀!
今天遇到一个反正切函数的定积分刚好用上了!
\[\int_0^x\arctan\left(t^2+a^2\right){\rm\,d}t=x\arctan\left(x^2+a^2\right)-2\int_0^x\frac{t^2}{1+\left(t^2+a^2\right)^2}{\rm\,d}t\]
\begin{align*}
&\mathrel{\phantom{=}}\frac{t^2}{1+(t^2+a^2)^2}{\rm\,d}t\\
&=\frac{1}{2}\frac{\left(t^2+\sqrt{a^4+1}\right)+\left(t^2-\sqrt{a^4+1}\right)}{t^4+a^4+1+2a^2t^2}{\rm\,d}t\\
&=\frac{1}{2}\left(\frac{1+\frac{\sqrt{a^4+1}}{t^2}}{t^2+\frac{a^4+1}{t^2}+2a^2}\right)\!{\rm\,d}t+\frac{1}{2}\left(\frac{1-\frac{\sqrt{a^4+1}}{t^2}}{t^2+\frac{a^4+1}{t^2}+2a^2}\right)\!{\rm\,d}t\\
&=\frac{1}{2}\frac{1+\frac{\sqrt{a^4+1}}{t^2}}{\left(t-\frac{\sqrt{a^4+1}}{t}\right)^2+2\left(a^2+\sqrt{a^4+1}\right)}{\rm\,d}t
+
\frac{1}{2}\frac{1-\frac{\sqrt{a^4+1}}{t^2}}{\left(t+\frac{\sqrt{a^4+1}}{t}\right)^2+2\left(a^2-\sqrt{a^4+1}\right)}{\rm\,d}t\\
&=\frac{1}{2}\frac{{\rm\,d}\left(t-\frac{\sqrt{a^4+1}}{t}\right)}{\left(t-\frac{\sqrt{a^4+1}}{t}\right)^2+2\left(\sqrt{a^4+1}+a^2\right)}
+\frac{1}{2}\frac{{\rm\,d}\left(t+\frac{\sqrt{a^4+1}}{t}\right)}{\left(t+\frac{\sqrt{a^4+1}}{t}\right)^2-2\left(\sqrt{a^4+1}-a^2\right)} \\
\end{align*}
\[ \int \frac{{\rm\,d}z}{z^2+c^2}=\frac{1}{c}\arctan\frac{z}{c}+C\\
\int \frac{{\rm\,d}z}{z^2-c^2}=\frac{1}{2c}\ln\left|\frac{z-c}{z+c}\right|+C \]
\begin{align*}
&\mathrel{\phantom{=}}\int\frac{{\rm\,d}\left(t-\frac{\sqrt{a^4+1}}{t}\right)}{\left(t-\frac{\sqrt{a^4+1}}{t}\right)^2+2\left(\sqrt{a^4+1}+a^2\right)}\\
&=\frac{1}{\sqrt{2\left(\sqrt{a^4+1}+a^2\right)}}
\arctan\left(\frac{t-\frac{\sqrt{a^4+1}}{t}}{\sqrt{2\left(\sqrt{a^4+1}+a^2\right)}}\right)+C\\
\end{align*}
\begin{align*}
&\mathrel{\phantom{=}}\int\frac{{\rm\,d}\left(t+\frac{\sqrt{a^4+1}}{t}\right)}{\left(t+\frac{\sqrt{a^4+1}}{t}\right)^2-2\left(\sqrt{a^4+1}-a^2\right)}\\
&=\frac{1}{2\sqrt{2\left(\sqrt{a^4+1}-a^2\right)}}
\ln\left|\frac{t+\frac{\sqrt{a^4+1}}{t}-\sqrt{2\left(\sqrt{a^4+1}-a^2\right)}}{t+\frac{\sqrt{a^4+1}}{t}+\sqrt{2\left(\sqrt{a^4+1}-a^2\right)}}\right|+C\\
\end{align*} 葡萄糖 发表于 2018-12-17 14:20
感谢分享
这个对称拆分的方法好呀!
今天遇到一个反正切函数的定积分刚好用上了!
仿照前不久Wayne发的那个特殊积分帖子,这个积分可以使用双曲三角代换来快速求解,不过需要对双曲三角函数性质较为熟悉。 本帖最后由 葡萄糖 于 2019-1-6 17:06 编辑
kastin 发表于 2014-7-26 15:25
这种类型的不定积分,大概在2年前我就很熟悉了,下面我将展示求这类有理分式不定积分过程中"拆"和“凑”的 ...
\begin{align*}
&&&\mathrel{\phantom{=}}2\int_0^1\frac{u^2}{\left(u^2-y\right)^2+y^2}{\rm\,d}u\\
&&&=\int_0^1\frac{\left(u^2+\sqrt{2}y\,\right)+\left(u^2-\sqrt{2}y\,\right)}{u^4+2y^2-2u^2y}{\rm\,d}u\\
&&&=\int_0^1\left(\frac{1+\frac{\sqrt{2}\,y}{u^2}}{u^2+\frac{2\,y^2}{u^2}-2y}\right)\!{\rm\,d}u
+\int_0^1\left(\frac{1-\frac{\sqrt{2}\,y}{u^2}}{u^2+\frac{2\,y^2}{u^2}-2y}\right)\!{\rm\,d}u\\
&&&=\int_0^1\frac{{\rm\,d}\left(u-\frac{\sqrt{2}\,y}{u}\right)}{\left(u-\frac{\sqrt{2}\,y}{u}\right)^2+2\left(\sqrt{2\,}-1\right)y}
+\int_0^1\frac{{\rm\,d}\left(u+\frac{\sqrt{2}\,y}{u}\right)}{\left(u+\frac{\sqrt{2}\,y}{u}\right)^2-2\left(\sqrt{2}+1\right)y}\\
&&&=\frac{1}{\sqrt{2\left(\sqrt{2}-1\right)y}}\arctan\left(\frac{\sqrt{2\left(\sqrt{2}-1\right)y}}{\sqrt{2}y-1}\right)
+\frac{1}{2\sqrt{2\left(\sqrt{2}+1\right)y}}\ln\left|\frac{1+\sqrt{2}y-\sqrt{2\left(\sqrt{2}+1\right)y}}{1+\sqrt{2}y+\sqrt{2\left(\sqrt{2}+1\right)y}}\right|
\end{align*}
\begin{align*}
\int \frac{{\rm\,d}z}{z^2+{c_1}^2}&=\frac{1}{c_1}\arctan\frac{z}{c_1}+C\\
\int \frac{{\rm\,d}z}{z^2-{c_2}^2}&=\frac{1}{2c_2}\ln\left|\frac{z-c_2}{z+c_2}\right|+C
\end{align*}
页:
[1]