sheng_jianguo 发表于 2019-9-22 18:52:19

mathe 发表于 2008-8-1 07:58
应该不等价
---------------------------
算法简介:


@mathe2#上传的果树问题14棵树到18棵树的一些解的文件不能下载了,麻烦有空能否再上传一下。这些结果最近有更新吗?19棵树有类似的统计文件吗?

mathe 发表于 2019-9-22 19:28:46


我把论坛里面相关信息提取到一个word文件,可以参考一下
大家有空可以帮忙修订一下,然后最好备份到某个共享空间,以防丢失

wreck 发表于 2019-9-25 22:40:03

3棵树的下界和n充分大时的最优解是1+行,而不是行,另外最好能添加一节参考文献。

mathe 发表于 2019-10-21 09:22:31

由于过去数据都丢失了,现在开始重新计算一些以前的数据。
8棵树一下太简单了,就不罗列了,
对于9棵树,从点线关系,本质上只有一种达到了3行
print(ABGHCDGIEFHI);
solve([],[]);
print("A=(1,A_y,0) B=(1,B_y,0) C_x=0 C_y=1 D_x=0 E_x=1 E_y=0 F_y=0 G=(0,1,0) H=(1,0,0) I_x=0 I_y=0 ");
但是9棵树3行的这个解中,点A和B都可以在直线GH上自由移动,所以有两个参数A_y,B_y可选。


对于10棵树5行,点线关系也只有一种:
print(ABCDAEFGBEHICFHJDGIJ);
solve([+1*D_Y-1*D_Y*I_X-1*J_Y-1*D_Y*J_Y,+1*G_Y+1*D_Y*I_X,-1+1*J_X+1*J_Y,+1+1*C_Y],);
print("A=(0,1,0) B=(1,0,0) C=(1,C_y,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=0 F_y=1 G_x=0 H_x=1 H_y=0 I_y=0 ");
也即是C_Y=-1, J_X=1-J_Y, G_Y=-D_Y*I_X, D_Y=J_Y/(1-I_X), 好像自由度还是很大。
大家帮忙再分析一下。

=====
wayne解
{{10,5},"ABCDAEFGBEHICFHJDGIJ",{{{"A",{0,1,0}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{1,Dy,0}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{0,-Dy Ix if 1+Dy!=0,1}},{"H",{1,0,1}},{"I",{Ix,0,1}},{"J",{(1+Dy Ix)/(1+Dy) if 1+Dy!=0,(Dy-Dy Ix)/(1+Dy) if 1+Dy!=0,1}}},{{"A",{0,1,0}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{1,-1,0}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{0,1,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1-Jy,Jy,1}}}}}

mathe 发表于 2019-10-21 09:27:15

同样11棵树6行也只有一种合法点线关系:
print(ABCJADEKBFGKCHIKDFHJEGIJ);
solve([+1-1*K_X+1*I_Y*K_X,+1*D_Y-1*E_Y-1*D_Y*K_X,+1*A_Y+1*D_Y-1*E_Y,+1+1*H_Y-1*I_Y,-1+1*I_X,-1+1*E_X],);
print("A_x=0 B_x=0 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) F=(1,0,0) G_x=1 G_y=0 H=(1,H_y,0) J=(0,1,0) K_y=0 ");
所以已经求出E_X=I_X=1,H_Y=I_Y-1, A_Y=E_Y-D_Y, D_Y=E_Y/(1-K_X), K_X=1/(1-I_Y), 所以同样由于存在很多自由参数,解的数目应该可以构造出很多,但是它们的点线关系都是一致的。
======
wayne解:
{{11,6},"ABCJADEKBFGKCHIKDFHJEGIJ",{{{"A",{0,Ay,1}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{1,-Ay+Ey if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0}},{"E",{1,Ey,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,-1+Ey/Ay if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0}},{"I",{1,Ey/Ay if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),1}},{"J",{0,1,0}},{"K",{Ay/(Ay-Ey) if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0,1}}},{{"A",{0,0 if Kx!=0,1}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{1,0 if Kx!=0,0}},{"E",{1,0 if Kx!=0,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,-(1/Kx) if Kx!=0,0}},{"I",{1,(-1+Kx)/Kx if Kx!=0,1}},{"J",{0,1,0}},{"K",{Kx,0,1}}}}}

mathe 发表于 2019-10-21 09:32:13

12棵树时,开始出现复杂的情况了,
首先,我们可以在复数范围得出两种点线关系不同的8行的情况
print(ABCDAEFGAHIJBEHKBFILCEJLCGIKDFJKDGHL);
solve([+1-1*L_X+1*L_X*L_X,-1+1*K_X+1*L_X,-1+1*J_Y+1*L_X,+1*G_Y-1*L_X,-1+1*C_Y+1*L_X,-1+1*J_X,-1+1*I_X,-1+1*L_Y,+1*D_Y+1*L_X,-1+1*I_Y],);
print("A=(0,1,0) B=(1,0,0) C=(1,C_y,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=0 F_y=1 G_x=0 H_x=1 H_y=0 K_y=0 ");

print(AEFGAHIJBEHKBFILCEJLCGIKDFJKDGHL);
solve([+1-1*L_Y+1*L_Y*L_Y,-1+1*C_Y,+1*C_X+1*L_Y,-1+1*K_Y+1*L_Y,-1+1*L_X+1*L_Y,-1+1*D_Y,+1+1*J_Y-1*L_Y,+1+1*I_Y,-1+1*G_X+1*L_Y,-1+1*D_X+1*L_Y],);
print("A=(1,0,0) B_x=0 B_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G_y=0 H=(0,1,0) I=(1,I_y,0) J=(1,J_y,0) K_x=0 ");
可以看出,上面遗留的方程中分别L_X, L_Y只有复数根。

而12棵树在实数和有理数范围都可以达到7行
print(AHIJBCHKBDILCEJLDGJKEFIKFGHL);
solve([+1*D_X-1*K_Y,-1+1*E_X+1*K_Y,+1+1*G_Y-1*K_Y,+1+1*J_Y,+1*F_Y-1*K_Y,+1*E_Y-1*K_Y,-1+1*F_X,-1+1*G_X],);
print("A=(1,A_y,0) B_x=0 B_y=0 C_x=0 C_y=1 D_y=0 H=(0,1,0) I=(1,0,0) J=(1,J_y,0) K_x=0 L_x=1 L_y=0 ");
print(ABIJACDKBEFLCGILDHJLEHIKFGJK);
solve([+1*F_Y-1*K_Y+1*E_X*K_Y,-1+1*B_X+1*F_Y,+1*F_X+1*F_Y-1*K_Y,+1*G_X-1*K_Y,+1*H_Y+1*K_Y,+1+1*J_Y,+1*E_Y-1*F_Y,+1*B_Y-1*F_Y],);
print("A_x=0 A_y=1 C_x=0 C_y=0 D=(0,1,0) G_y=0 H=(1,H_y,0) I_x=1 I_y=0 J=(1,J_y,0) K_x=0 L=(1,0,0) ");


==========
wayne解:
{{12,7},"AHIJBCHKBDILCEJLDGJKEFIKFGHL",{{{"A",{1,Ay,0}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{Ey,0,1}},{"E",{1-Ey,Ey,1}},{"F",{1,Ey,1}},{"G",{1,-1+Ey,1}},{"H",{0,1,0}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{0,Ey,1}},{"L",{1,0,1}}}}}


{{12,7},"ABIJACDKBEFLCGILDHJLEHIKFGJK",{{{"A",{0,1,1}},{"B",{1+Hy-Ex Hy,(-1+Ex) Hy,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{Ex,(-1+Ex) Hy,1}},{"F",{-Ex Hy,(-1+Ex) Hy,1}},{"G",{-Hy,0,1}},{"H",{1,Hy,0}},{"I",{1,0,1}},{"J",{1,-1,0}},{"K",{0,-Hy,1}},{"L",{1,0,0}}}}}

mathe 发表于 2019-10-21 09:34:14

13棵树9行还留下不超过6种模式(最好能够再验算一下是否每种都是合法的),其中第二种是有理解:

print(ADEFAGHIBDGJBHKLCDKMCEILEHJMFGLMFIJK);
solve([+1+1*M_Y+1/2*M_Y*M_Y,+2+1*L_Y+2*M_Y,+1+1*K_X,-1+1*L_X-1*M_Y,+1+1*B_X+1*M_Y,+2+1*C_Y+1*M_Y,-1+1*C_X-1*M_Y,-1+1*I_X-1*M_Y,+1*K_Y+1*M_Y,+1+1*H_Y,+1*I_Y+1*M_Y,+1*F_Y+1*M_Y],);
print("A_x=0 A_y=1 B_y=0 D_x=0 D_y=0 E=(0,1,0) F_x=0 G_x=1 G_y=0 H=(1,H_y,0) J=(1,0,0) M=(1,M_y,0) ");
print(ABEFAGHMBIJMCEKMCGILDFLMDGJKEHJLFHIK);
solve([+2+1*L_Y,+1+1*L_X,-4+1*C_Y,-3+1*G_Y,-2+1*K_Y,+4+1*D_Y,+1+1*J_Y,-1+1*K_X,-1+1*H_Y,-1+1*C_X,+1+1*D_X,+1+1*F_X],);
print("A=(1,0,0) B_x=0 B_y=0 E_x=1 E_y=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 J_x=0 M=(0,1,0) ");

print(BCDEBFGHBIJKCFILCGJMDFKMDHJLEGKLEHIM);
solve([+1-1*M_X+1*M_X*M_X,-1+1*L_X+1*M_X,-1+1*K_Y+1*M_X,+1*H_Y-1*M_X,-1+1*D_Y+1*M_X,-1+1*K_X,-1+1*J_X,-1+1*M_Y,+1*E_Y+1*M_X,-1+1*J_Y],);
print("B=(0,1,0) C=(1,0,0) D=(1,D_y,0) E=(1,E_y,0) F_x=0 F_y=0 G_x=0 G_y=1 H_x=0 I_x=1 I_y=0 L_y=0 ");
print(AEFGAHIMBEHJBFKMCELMCGIKDGJMDHKLFIJL);
solve([+1+1*L_Y-1*L_Y*L_Y,+1+1*D_Y-1*L_Y,-1+1*C_Y-1*L_Y,+2+1*H_Y-1*L_Y,+1+1*J_Y,-1+1*B_Y+1*L_Y,+1*L_X+1*L_Y,-1+1*J_X,+1*E_X+1*L_Y,+1*C_X+1*L_Y,-1+1*D_X,+1+1*I_Y],);
print("A=(1,0,0) B_x=0 E_y=0 F_x=0 F_y=0 G_x=1 G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=0 K_y=1 M=(0,1,0) ");
print(ABLMAFGHBIJKCFILCGJMDFKMDHJLEGKLEHIM);
solve([+1+1*M_Y+1*M_Y*M_Y,+1+1*K_X+1*M_Y,+1/3+1*B_Y-1/3*M_Y,+1+1*D_X,+1*E_X+1*M_Y,+1*J_X-1*M_Y,-1+1*C_X-1*M_Y,+1*D_Y+1*M_Y,-1+1*E_Y,-1+1*K_Y,+1*J_Y+1*M_Y,+1*H_Y+1*M_Y],);
print("A=(0,1,0) B=(1,B_y,0) C_y=0 F_x=0 F_y=0 G_x=0 G_y=1 H_x=0 I_x=1 I_y=0 L=(1,0,0) M=(1,M_y,0) ");
print(ABKLAGHMBIJMCDKMCGILDHJLEFLMEHIKFGJK);
solve([+1-1*K_X*K_X,-1+1*F_Y+1*K_X,-1+1*D_Y+1*K_X,+1+1*E_Y-1*K_X,+1+1*C_Y-1*K_X,+1*I_Y-1*K_X,-1+1*E_X,-1+1*F_X,+1*G_Y+1*K_X,+1*C_X-1*K_X,+1+1*H_Y,+1*D_X-1*K_X],);
print("A=(1,0,0) B_x=0 B_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 J_x=0 J_y=1 K_y=0 L_x=1 L_y=0 M=(0,1,0) ");
其中最后一个要求K_X=1或-1,但是K_X=1会导致F_Y=0,这是不允许的,所以只能K_X=-1。

=======
wayne实数解:
{{13,9},"ABEFAGHMBIJMCEKMCGILDFLMDGJKEHJLFHIK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,4,1}},{"D",{-1,-4,1}},{"E",{1,0,1}},{"F",{-1,0,1}},{"G",{1,3,0}},{"H",{1,1,0}},{"I",{0,1,1}},{"J",{0,-1,1}},{"K",{1,2,1}},{"L",{-1,-2,1}},{"M",{0,1,0}}}}}
{{13,9},"AEFGAHIMBEHJBFKMCELMCGIKDGJMDHKLFIJL",{{{"A",{1,0,0}},{"B",{0,1/2 (1-Sqrt),1}},{"C",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"D",{1,1/2 (-1+Sqrt),1}},{"E",{1/2 (-1-Sqrt),0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,1/2 (-3+Sqrt),0}},{"I",{1,-1,0}},{"J",{1,-1,1}},{"K",{0,1,1}},{"L",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"M",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,1/2 (1+Sqrt),1}},{"C",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"D",{1,1/2 (-1-Sqrt),1}},{"E",{1/2 (-1+Sqrt),0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,1/2 (-3-Sqrt),0}},{"I",{1,-1,0}},{"J",{1,-1,1}},{"K",{0,1,1}},{"L",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"M",{0,1,0}}}}}
{{13,9},"ABKLAGHMBIJMCDKMCGILDHJLEFLMEHIKFGJK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{-1,-2,1}},{"D",{-1,2,1}},{"E",{1,-2,1}},{"F",{1,2,1}},{"G",{1,1,0}},{"H",{1,-1,0}},{"I",{0,-1,1}},{"J",{0,1,1}},{"K",{-1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,1}},{"F",{1,0,1}},{"G",{1,-1,0}},{"H",{1,-1,0}},{"I",{0,1,1}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}}}}}

mathe 发表于 2019-10-21 09:42:01

14棵树情况很复杂,计算机处理以后10行以上还余下99种(里面还包含增根,需要大家帮忙再处理一下,淘汰增根)
从我们留在OEIS中记录信息可以知道存在10行的实数和整数解,以及11行的复数解。
print(ACDEAFGHBIJKBLMNCFILCGJMDFJNDHKLEGKNEHIM);
solve([+1-1*F_Y*I_Y+1*I_Y*J_X+1*I_Y*J_Y+1*J_Y*J_Y,+1*F_Y+1*I_Y*J_Y+1*J_Y*J_Y,+1*I_Y-1*I_Y*J_X+1*J_Y,+1*J_X+1*I_Y*J_X+1*I_Y*J_Y+1*J_X*J_Y+1*J_Y*J_Y,+1*F_X+1*F_Y-1*J_X,+1+1*A_X+1*I_Y-1*J_X+1*J_Y,+1*D_X+1*I_Y+1*J_Y,-1+1*D_Y-1*I_Y-1*J_Y,+1*G_X-1*J_X,+1*C_X-1*J_X,+1*B_Y+1*I_Y,-1+1*C_Y-1*I_Y-1*J_Y,+1+1*H_Y,-1+1*A_Y-1*I_Y-1*J_Y],);
print("B_x=0 E=(1,0,0) G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=1 K_y=0 L_x=0 L_y=1 M=(0,1,0) N_x=0 N_y=0 ");
print(AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEGKLFHIJ);
solve([+1-1*J_Y*K_Y+1*L_Y+1*J_Y*L_Y,+1*J_Y+1*L_Y+1*J_Y*L_Y,-1+1*D_Y-2*L_Y,+1+1*C_Y,-1+1*H_Y-1*L_Y,+1*K_X+1*K_Y,+1*L_X+1*L_Y,-1+1*F_Y+1*J_Y,+1*H_X+1*L_Y,+1*C_X+1*K_Y,+1+1*G_Y,+1*D_X+1*L_Y,+1*I_X+1*K_Y],);
print("A_x=0 A_y=1 B=(1,0,0) E_x=0 E_y=0 F_x=0 G=(1,G_y,0) I_y=0 J=(1,J_y,0) M=(0,1,0) N_x=1 N_y=0 ");
print(AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEHJKFGIL);
solve([+1-2*G_X*K_Y+2*G_X*L_Y-1*K_Y*L_Y,+1*C_X-1*C_X*K_Y-2*G_X*K_Y+1*L_Y+2*G_X*L_Y-1*K_Y*L_Y,+1*G_X-2*G_X*K_Y+1*G_X*L_Y-1*K_Y*L_Y,+1*K_Y-1*G_X*K_Y+1*G_X*L_Y-1*K_Y*L_Y,+1+1*I_Y-1*K_Y,+1+1*B_Y-1*L_Y,+1*D_Y-1*K_Y,+1*F_Y-1*K_Y,-1+1*D_X+1*K_Y,-1+1*L_X+1*L_Y,-1+1*K_X,-1+1*J_X,+1*C_Y-1*L_Y,+1*J_Y-1*L_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) E=(0,1,0) F_x=0 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M_x=0 M_y=1 N=(1,0,0) ");
print(AEFMAGHNBEINBGJMCHKMCJLNDFKNDILMEGKLFHIJ);
solve([+1-1*N_X+1*L_Y*N_X,+1*G_Y-1*J_X*L_Y,+1*J_X+1*L_Y*N_X-1*N_X*N_X,+1*A_Y*J_X-1*J_X*L_Y-1*A_Y*N_X,+1*L_Y+1*A_Y*N_X-1*L_Y*N_X,-1+1*J_Y-1*L_Y+1*N_X,+1*E_Y-1*L_Y,-1+1*B_Y-1*G_Y+1*N_X,-1+1*L_X,-1+1*I_X,+1*B_X-1*J_X,+1*G_X-1*J_X,-1+1*I_Y-1*L_Y+1*N_X,-1+1*H_Y-1*L_Y+1*N_X],);
print("A=(1,A_y,0) C_x=0 C_y=1 D_x=1 D_y=0 E=(1,E_y,0) F=(1,0,0) H_x=0 K_x=0 K_y=0 M=(0,1,0) N_y=0 ");
print(ACDEAFGHBCIJBKLMCFKNDFJMDGILEGMNEHIKHJLN);
solve([+1-2*I_Y+2*I_Y*I_Y,-1+1*A_X+2*I_Y,+1+1*A_Y-1*I_Y,-1+1*I_X+2*I_Y,+1*H_Y+1*I_Y,-1+1*E_Y+1*I_Y,-1+1*B_X+1*I_Y,-1+1*D_X+1*I_Y,+1*G_Y+1*I_Y,+1+1*L_Y,-1+1*E_X,-1+1*G_X,+1*C_Y-1*I_Y,+1*B_Y-1*I_Y],);
print("C_x=0 D_y=0 F_x=0 F_y=0 H=(1,H_y,0) J=(1,0,0) K_x=0 K_y=1 L=(1,L_y,0) M_x=1 M_y=0 N=(0,1,0) ");
print(ACDEAFGHBCIJBKLMCFKNDGILDHJKEFIMEHLNGJMN);
solve([+1+1*M_Y+1/2*M_Y*M_Y,+1*A_Y+1/2*M_Y,-2+1*I_Y,-1+1*E_X-1*M_Y,+1+1*I_X,+1*F_X-1*M_Y,+1*B_Y+2*M_Y,+1*A_X-1/2*M_Y,+1*F_Y+1*M_Y,+1*C_Y+1*M_Y,+1+1*G_Y,+1+1*C_X,+1*K_Y+1*M_Y,+1+1*B_X],);
print("D_x=0 D_y=1 E_y=0 G=(1,G_y,0) H_x=0 H_y=0 J=(0,1,0) K_x=0 L_x=1 L_y=0 M=(1,M_y,0) N=(1,0,0) ");
print(AEFGAHMNBEIMBFJNCEKNCJLMDGKMDILNFHKLGHIJ);
solve([+1+2*N_Y+2*N_Y*N_Y,+1*L_Y+2*L_Y*N_Y+1*N_Y*N_Y,-1+1*I_X-2*N_Y,-2+1*L_X+2*L_Y-1*N_Y,-1+1*K_Y-1*N_Y,+1*I_Y+1*N_Y,+1+1*B_Y+2*N_Y,+1+1*J_Y-1*L_Y+1*N_Y,+1*C_Y-1*L_Y-1*N_Y,-2+1*C_X+2*L_Y-1*N_Y,+1+1*H_Y+1*N_Y,-2+1*J_X+2*L_Y-1*N_Y,-1+1*B_X-2*N_Y,-1+1*E_X-2*N_Y],);
print("A=(1,0,0) D_x=0 D_y=1 E_y=0 F_x=1 F_y=0 G_x=0 G_y=0 H=(1,H_y,0) K_x=0 M=(0,1,0) N=(1,N_y,0) ");
print(AEFGAHMNBEIMBFJNCEKNCGLMDILNDJKMFHKLGHIJ);
solve([+1-1*L_X-1*L_X*L_Y-1*L_Y*L_Y,+1*L_X*L_X+1*L_Y+1*L_X*L_Y,+1*H_Y+1*L_X+1*L_Y,+1*K_Y+1*L_X+1*L_Y,+1+1*C_Y-1*L_X-1*L_Y,-1+1*D_Y+2*L_X+1*L_Y,+1*G_X-1*L_X-1*L_Y,-1+1*I_Y+1*L_X,-1+1*J_Y+1*L_X+1*L_Y,+1*I_X-1*L_X,-1+1*C_X,-1+1*K_X,+1+1*M_Y,+1*D_X-1*L_X],);
print("A=(1,0,0) B_x=0 B_y=1 E_x=1 E_y=0 F_x=0 F_y=0 G_y=0 H=(1,H_y,0) J_x=0 M=(1,M_y,0) N=(0,1,0) ");
print(ADEFAGHNBDGIBJKNCELNCHJMDKLMEHIKFGJLFIMN);
solve([+1+1*M_Y-1*K_Y*M_Y+2*M_Y*M_Y,+1*K_Y+1*M_Y*M_Y,-1+1*C_X-1*K_Y+1*M_Y,-1+1*B_X+1*K_Y,-1+1*H_X-1*M_Y,-1+1*K_X+1*K_Y-1*M_Y,-1+1*L_Y-1*M_Y,+1*B_Y-1*K_Y,-1+1*C_Y-1*M_Y,-1+1*E_Y-1*M_Y,+1+1*I_Y,+1*J_Y-1*K_Y,-1+1*J_X,-1+1*L_X],);
print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G_x=1 G_y=0 H_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(1,0,0) ");
print(ACDEAFGHBCIJBFKLCGKMDFMNDHILEHJMEIKNGJLN);
solve([+1-2*M_X+1*G_Y*M_X+2*M_X*M_X,+1*G_Y-1*M_X+1*M_X*M_X,+1*A_X*G_Y-1*G_Y*M_X-1*M_X*M_X,-2+1*B_Y+1*G_Y+2*M_X,+1+1*K_Y-1*M_X,+1+1*C_X-1*M_X,+2+1*B_X-1*G_Y-2*M_X,-1+1*D_Y+1*M_X,-1+1*F_Y+1*G_Y,-1+1*A_Y+1*M_X,+1*D_X-1*M_X,+1*F_X-1*M_X,+1+1*I_Y,-1+1*C_Y+1*M_X],);
print("E=(1,0,0) G_x=0 H_x=1 H_y=0 I=(1,I_y,0) J_x=0 J_y=0 K=(1,K_y,0) L_x=0 L_y=1 M_y=0 N=(0,1,0) ");
print(ACDEAFGHBCIJBFKLCGKMDFMNDHILEGINEJLMHJKN);
solve([+1-1*N_X-1*M_Y*N_X-1*N_Y+1*N_X*N_Y,+1*A_Y+1*D_Y*E_X-1*M_Y,+1*C_X-1*N_X+1*C_Y*N_X,+1*C_Y-1*M_Y+1*C_X*M_Y-1*C_Y*N_X-1*M_Y*N_X-1*C_X*N_Y+1*N_X*N_Y,+1*C_X*D_Y-1*D_Y*E_X+1*C_X*M_Y-1*C_Y*N_X-1*M_Y*N_X-1*C_X*N_Y+1*N_X*N_Y,+1*E_X+1*M_Y+1*E_X*M_Y-1*N_X-1*M_Y*N_X-1*N_Y-1*E_X*N_Y+1*N_X*N_Y,+1*M_X-1*N_X+1*M_Y*N_X,+1*D_Y*M_X-1*M_Y,+1*D_Y*N_X-1*N_Y,+1+1*I_Y+1*M_Y-1*N_Y,+1*J_Y-1*M_Y,+1*E_Y-1*M_Y,+1*K_X-1*N_X,+1*J_X-1*N_X],);
print("A_x=0 B_x=1 B_y=0 D=(1,D_y,0) F_x=0 F_y=0 G_x=0 G_y=1 H=(0,1,0) I=(1,I_y,0) K_y=0 L=(1,0,0) ");
print(ACDEAFGHBCIJBFKLCFMNDGIKDHJMEHKNEILMGJLN);
solve([+1-1*L_X-1*L_X*N_Y,+1*K_X-1/2*L_X-1/2*K_X*L_Y+1/2*L_X*L_Y,+1*L_Y-1*K_X*N_Y,+1*G_X+1*K_X-1*L_X,+1+1*J_Y-1*L_X-1*L_Y,+1+1*I_Y-1*L_Y,+1+1*B_X-1*L_X,-1+1*E_Y+1*L_X,+1+1*C_Y,+1*I_X-1*L_X,+1*E_X-1*L_X,+1*B_Y-1*L_Y,+1*K_Y-1*L_Y],);
print("A_x=1 A_y=0 C=(1,C_y,0) D_x=0 D_y=1 F=(1,0,0) G_y=0 H_x=0 H_y=0 J_x=0 M=(0,1,0) N=(1,N_y,0) ");
print(ADEFAGHNBDIJBKLNCEGKCFINDGLMEJMNFHJLHIKM);
solve([-2+1*L_Y,+3+1*L_X,+1/2+1*G_Y,+2/3+1*H_Y,+1+1*M_Y,-3+1*K_Y,-3/2+1*C_Y,-3+1*M_X,+2+1*J_Y,-3+1*E_X,+3+1*K_X,-3+1*J_X,-4+1*B_Y,+3+1*B_X],);
print("A=(1,0,0) C_x=0 D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 N=(0,1,0) ");
print(ADEFAGHNBDIJBKLNCEGKCFINDHKMEJMNFHJLGILM);
solve([+2+1*L_Y,+3/4+1*G_Y,-4+1*L_X,+1/2+1*M_Y,-2+1*M_X,+3/2+1*K_Y,-3/2+1*C_Y,+1/2+1*H_Y,+1+1*J_Y,-2+1*E_X,+3+1*B_Y,-2+1*J_X,-4+1*B_X,-4+1*K_X],);
print("A=(1,0,0) C_x=0 D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 N=(0,1,0) ");
print(ADEFAGHIBDJKBELNCGLMCHJNDIMNEHKMFGKNFIJL);
solve([+1+1*N_Y+1*N_Y*N_Y,-1+1*M_X-1*N_Y,-1+1*L_Y-2*N_Y,-2+1*H_X-1*N_Y,+1+1*M_Y,-4/3+1*C_X-2/3*N_Y,-1/3+1*B_X+1/3*N_Y,-1+1*G_Y-1*N_Y,+1*I_Y-1*N_Y,+1+1*E_Y+1*N_Y,+1*H_Y-1*N_Y,+1*C_Y-1*N_Y,-1+1*G_X,-1+1*N_X],);
print("A_x=0 A_y=1 B_y=0 D_x=0 D_y=0 E_x=0 F=(0,1,0) I=(1,I_y,0) J=(1,0,0) K_x=1 K_y=0 L=(1,L_y,0) ");
print(ADEFAGHIBDJKBGLNCEJNCHLMDIMNEGKMFHKNFIJL);
solve([-1/8+1*B_X,+1+1*C_Y,-1/2+1*K_Y,-2/3+1*G_Y,-2+1*L_Y,-1/4+1*K_X,-1/2+1*N_X,+2+1*F_Y,+1/4+1*J_X,-1/2+1*J_Y,+2/3+1*E_Y,+1+1*L_X,-2+1*C_X,-1/2+1*B_Y],);
print("A=(0,1,0) D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 H_x=0 H_y=1 I_x=0 I_y=0 M_x=1 M_y=0 N_y=0 ");
print(ADEFAGHNBDIJBEKNCFINCGKLDLMNEGJMFHJLHIKM);
solve([+1-1/2*L_Y+1/2*L_Y*L_Y,-1/2+1*I_X+1/4*L_Y,-2+1*B_Y,-1/2+1*J_X,-1+1*I_Y+1/2*L_Y,-1+1*K_Y+1*L_Y,-2+1*H_Y+1*L_Y,+1*C_Y-1/2*L_Y,-1+1*G_Y,-1+1*J_Y,-1+1*G_X,-1+1*H_X,-1/2+1*F_X+1/4*L_Y,-1/2+1*C_X+1/4*L_Y],);
print("A_x=1 A_y=0 B=(1,B_y,0) D_x=0 D_y=0 E=(1,0,0) F_y=0 K=(1,K_y,0) L_x=0 M_x=0 M_y=1 N=(0,1,0) ");
print(ADEFAGHNBDIJBEKNCFINCGKLDLMNEHJLFGJMHIKM);
solve([+1+1/2*I_Y*J_Y-1/3*M_Y-1/2*I_Y*M_Y+1/6*J_Y*M_Y,+1*I_Y-1/2*M_Y-1/2*I_Y*M_Y,+1*J_Y-1/3*M_Y-1/3*J_Y*M_Y,+1+1*B_Y,-1+1*M_X+1/2*M_Y,-1+1*J_X+1/2*J_Y,+1+1*C_Y,+1+1*H_Y-1*I_Y,+2+1*G_Y,+1+1*L_Y-1*M_Y,-1+1*I_X,-1+1*L_X+1/2*M_Y,-1+1*C_X,-1+1*D_X+1/2*M_Y],);
print("A=(1,0,0) B_x=0 D_y=0 E_x=0 E_y=0 F_x=1 F_y=0 G=(1,G_y,0) H=(1,H_y,0) K_x=0 K_y=1 N=(0,1,0) ");
print(ADEFAGHIBDJKBGLNCEJNCHLMDIMNEIKLFGJMFHKN);
solve([-1/3+1*C_Y,-1/2+1*K_Y,-1+1*E_Y,-2/3+1*L_Y,-2/3+1*L_X,-4/3+1*C_X,-3/4+1*B_X,-2+1*M_X,-3/2+1*J_X,-2+1*G_Y,-1/2+1*K_X,-1/2+1*B_Y,+1+1*F_Y,-1/2+1*J_Y],);
print("A=(0,1,0) D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 H_x=0 H_y=1 I_x=0 I_y=0 M_y=0 N_x=1 N_y=0 ");
print(ABDEAFGNBHINCDJNCFKLDHKMEGIKELMNFIJMGHJL);
solve([+1*L_Y-1*M_Y-1*L_Y*M_Y-1*M_Y*M_Y,+1*L_Y*L_Y+1*M_Y+1*L_Y*M_Y,-1+1*K_Y-1*L_Y-1*M_Y,+1*J_Y+1*M_Y,+1*C_Y-1*L_Y+2*M_Y,+1*K_X+1*L_Y+1*M_Y,-1+1*J_X-1*L_Y-1*M_Y,-1+1*H_Y-1*L_Y,+1+1*F_Y-1*M_Y,-1+1*L_X,-1+1*M_X,-1+1*C_X-1*L_Y-1*M_Y,+1+1*G_Y,-1+1*D_X-1*L_Y-1*M_Y],);
print("A=(1,0,0) B_x=0 B_y=0 D_y=0 E_x=1 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_x=0 I_y=1 N=(0,1,0) ");
print(ACDEAFGHBCIJBDKLCFKMDGMNEGILEHJMFJLNHIKN);
solve([+1+1*A_Y,+1+1*B_X,-4/3+1*A_X,-1/3+1*M_X,-3/2+1*L_Y,-3/2+1*K_Y,-2/3+1*E_X,-2+1*D_Y,-1/2+1*G_Y,-1/3+1*D_X,-1/3+1*G_X,+3/2+1*F_Y,-1+1*M_Y,-1+1*E_Y],);
print("B_y=0 C_x=1 C_y=0 F=(1,F_y,0) H_x=0 H_y=1 I_x=0 I_y=0 J=(1,0,0) K_x=0 L=(1,L_y,0) N=(0,1,0) ");
print(ACDEAFGHBCIJBDKLCFKMDGMNEFINEGJLHILMHJKN);
solve([+1-1*D_Y-1*D_X*F_Y,+1*A_Y-1*D_Y-1*D_X*F_Y-1*A_Y*M_X+1*F_Y*M_X,+1*B_Y+1*D_Y+1*D_X*F_Y-1*B_Y*M_X,+1*B_Y*D_X+1*D_X*F_Y-1*B_Y*M_X,+1*F_Y-1*F_Y*M_X-1*M_Y,+1*A_X*F_Y+1*A_Y*M_X-1*F_Y*M_X,+1*F_Y*G_X-1*F_Y*M_X+1*G_X*M_Y,+1*M_X-1*G_X*M_Y,+1*D_Y*M_X-1*D_X*M_Y,+1*C_Y+1*F_Y,-1+1*L_Y,-1+1*G_Y,+1*L_X-1*M_X,+1*H_X-1*M_X],);
print("B=(1,B_y,0) C=(1,C_y,0) E_x=0 E_y=1 F_x=0 H_y=0 I=(0,1,0) J=(1,0,0) K_x=1 K_y=0 N_x=0 N_y=0 ");
print(ADEFAGHIBDJKBGLNCDMNCHJLEHKNEILMFGKMFIJN);
solve([-9/10+1*C_Y,-1+1*B_X,-3/5+1*N_Y,+1/8+1*C_X,+1/2+1*N_X,-4/5+1*M_Y,-1/4+1*L_X,-6/5+1*J_Y,+2/5+1*K_Y,-3/5+1*L_Y,-2/5+1*E_Y,-3/5+1*B_Y,+1/2+1*J_X,+1/2+1*I_X],);
print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G=(1,0,0) H_x=1 H_y=0 I_y=0 K=(1,K_y,0) M=(1,M_y,0) ");
print(ABEMAFGNBHINCFHJCKMNDELNDIJMEGJKFIKLGHLM);
solve([+1-1*J_Y+1/3*J_Y*J_Y,+1*D_Y+1/2*J_Y-1/2*D_Y*J_Y-1/2*J_Y*J_Y,+3+1*I_Y-2*J_Y,-2+1*I_X+1*J_Y,+2+1*H_Y-1*J_Y,-1+1*J_X+1*J_Y,-2+1*C_Y+1*J_Y,+2+1*F_Y,+1+1*L_Y,-1+1*L_X,-2+1*H_X+1*J_Y,-1+1*D_X,-2+1*B_X+1*J_Y,+1+1*G_Y],);
print("A=(1,0,0) B_y=0 C_x=0 E_x=1 E_y=0 F=(1,F_y,0) G=(1,G_y,0) K_x=0 K_y=1 M_x=0 M_y=0 N=(0,1,0) ");
print(ABDEAFGNBHINCFHJCKLNDFKMDIJLEGIKEJMNGHLM);
solve([+1+1*L_Y-1*L_Y*L_Y,-2+1*H_X,-2+1*L_X+1*L_Y,+1+1*M_Y,+1*F_X-1*L_Y,+1+1*J_Y+1*L_Y,-3+1*C_X+1*L_Y,-1+1*F_Y,-1+1*D_Y-1*L_Y,-1+1*G_Y,-1+1*G_X,-1+1*K_X,+1*C_Y-1*L_Y,+1*K_Y-1*L_Y],);
print("A_x=0 A_y=1 B_x=0 B_y=0 D_x=0 E=(0,1,0) H_y=0 I_x=1 I_y=0 J=(1,J_y,0) M=(1,M_y,0) N=(1,0,0) ");
print(AEFGAHIMBEMNBHJKCFJNCGLMDFKMDHLNEIJLGIKN);
solve([+1+1*K_Y-1*K_Y*K_Y,-1+1*B_Y+1*K_Y,+1+1*C_X-1*K_Y,-2+1*D_X+1*K_Y,-2+1*H_X,+1+1*J_Y-1*K_Y,-1+1*K_X+1*K_Y,+1*D_Y-1*K_Y,-1+1*L_Y,-1+1*C_Y,-1+1*J_X,-1+1*L_X,+1+1*N_Y,+1*F_Y-1*K_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) E=(0,1,0) F_x=0 G_x=0 G_y=1 H_y=0 I_x=1 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
print(AEFGAHIMBEMNBHJKCFJNCGKMDFLMDIKNEIJLGHLN);
solve([+1-2*N_Y+1/2*N_Y*N_Y,-1+1*K_X+1/2*N_Y,+2+1*L_Y-3*N_Y,-2+1*J_X+1/2*N_Y,+1+1*J_Y-1*N_Y,+1+1*C_Y-2*N_Y,+2+1*H_Y-2*N_Y,+2+1*I_Y-3*N_Y,+2+1*D_Y-4*N_Y,-1+1*K_Y+1*N_Y,-1+1*C_X+1/2*N_Y,-1+1*L_X,-1+1*G_X+1/2*N_Y,-1+1*D_X],);
print("A=(1,0,0) B_x=0 B_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
print(ABLMAFGNBHINCDLNCFJMDHKMEGIMEJKNFIKLGHJL);
solve([+1-3*N_Y+3*N_Y*N_Y,+2+1*E_X-3*N_Y,+1+1*K_Y-3*N_Y,+1+1*B_Y-1*N_Y,-2+1*H_X+3*N_Y,+1+1*I_X,-1+1*K_X+3*N_Y,+1*C_X-1*N_Y,-1+1*D_X+2*N_Y,-1+1*I_Y,+1+1*H_Y-3*N_Y,-1+1*E_Y,+1+1*L_Y,+1+1*D_Y-3*N_Y],);
print("A=(0,1,0) B=(1,B_y,0) C_y=0 F_x=0 F_y=0 G_x=0 G_y=1 J_x=1 J_y=0 L=(1,L_y,0) M=(1,0,0) N_x=0 ");
print(ACDEAFGHBCIJBDKLCFKMDGINEFLNEGJMHILMHJKN);
solve([+1-3*N_X+1*N_X*N_X,+1*B_Y-1*N_X,+1*B_X-1*N_X,+1+1*A_X,-1+1*K_Y+1*N_X,+2+1*J_Y-1*N_X,+1+1*D_X-1*N_X,+1+1*H_Y,+1+1*G_Y,+1+1*I_Y-1*N_X,-1+1*I_X,-1+1*H_X,-1+1*A_Y,-1+1*D_Y],);
print("C_x=0 C_y=1 E=(1,0,0) F_x=0 F_y=0 G=(1,G_y,0) J=(1,J_y,0) K_x=0 L_x=1 L_y=0 M=(0,1,0) N_y=0 ");
print(ACDEAFGHBCIJBDKLCFKMDGINEFLNEHIMGJLMHJKN);
solve([+1+1*M_Y*N_X,+1*B_X-1*B_X*I_Y+1*B_X*M_Y+1*B_Y*N_X+1*I_Y*N_X,+1*B_Y-1*B_X*I_Y+1*M_Y*N_X,+1*I_Y-1*I_Y*N_X+1*N_Y,+1*K_X+1*I_Y*N_X-1*N_Y+1*N_X*N_Y,+1*I_Y*K_X-1*M_Y*N_X-2*N_Y,+1*K_X*M_Y-1*M_Y*N_X-1*N_Y,-1+1*J_X-1*K_X+1*N_X,+1+1*L_Y+1*M_Y,+1*L_X-1*N_X,+1*F_X-1*N_X,+1*D_Y+1*I_Y,+1*K_Y-1*N_Y,+1*J_Y-1*N_Y],);
print("A_x=0 A_y=0 C_x=0 C_y=1 D_x=0 E=(0,1,0) F_y=0 G_x=1 G_y=0 H=(1,0,0) I=(1,I_y,0) M=(1,M_y,0) ");
print(ABDEAFGNBHINCFJKCHLMDGHJDKLNEFILEJMNGIKM);
solve([+1-3*M_X+1*M_X*M_X,+1*C_Y+5/3*M_X-1/3*C_Y*M_X-2/3*M_X*M_X,-2+1*C_X-1*C_Y,+2+1*L_Y-1*M_X,+5+1*K_Y-2*M_X,-1+1*I_X+1*M_X,+2+1*G_Y-1*M_X,-2+1*F_X+1*M_X,-1+1*J_X,-1+1*G_X,-1+1*J_Y,-1+1*M_Y,+2+1*F_Y-1*M_X,+2+1*A_Y-1*M_X],);
print("A_x=0 B_x=0 B_y=0 D=(0,1,0) E_x=0 E_y=1 H_x=1 H_y=0 I_y=0 K=(1,K_y,0) L=(1,L_y,0) N=(1,0,0) ");
print(ADEFAGHNBDIJBEKNCDLNCGKMEHIMFGILFJMNHJKL);
solve([+1-1*I_X*L_Y+1*K_X*L_Y,+1*I_X+1*I_X*K_Y-1*I_X*L_Y+1*K_X*L_Y,+1*K_X+1*K_X*K_Y-1*I_X*L_Y,+1*K_Y-1*I_X*L_Y,+1*I_Y-1*K_Y,-1+1*B_Y,-1+1*C_Y-1*L_Y,-1+1*J_Y-1*K_Y,+1*G_Y-1*L_Y,+1+1*H_Y+1*K_Y-1*L_Y,+1*B_X-1*K_X,-1+1*L_X,-1+1*C_X,+1*E_X-1*K_X],);
print("A=(1,0,0) D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) J_x=0 M_x=0 M_y=1 N=(0,1,0) ");
print(ADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN);
solve([+1-1*L_X*M_X-1*M_Y,+1*L_X-1*M_X*M_X-1*M_Y-1*L_X*M_Y,+1*I_Y*L_X+1*L_X*M_X-1*M_X*M_X-1*L_X*M_Y,+1*M_X-1*M_X*M_X-1*M_Y,+1*K_Y+1*M_X,+1+1*J_Y-1*M_X-1*M_Y,-1+1*C_Y+1*M_X,+1*B_Y-1*I_Y+1*M_Y,+1*L_Y-1*M_Y,-1+1*C_X,+1*D_Y-1*M_Y,-1+1*I_X,+1*J_X-1*L_X,+1*H_X-1*L_X],);
print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 K=(1,K_y,0) N=(0,1,0) ");
print(ADEFAGHNBDGIBJKNCEHJCFLNDJLMEIMNFGKMHIKL);
solve([+1-1*H_Y-2*N_Y+1*H_Y*N_Y,+1*A_X+1*N_Y-1*A_X*N_Y,+1*B_X-1*H_Y-1*N_Y-2*B_X*N_Y+1*H_Y*N_Y,+1*C_Y-1*N_Y-1*C_Y*N_Y+2*N_Y*N_Y,+1*A_X*H_Y+2*N_Y-1*A_X*N_Y-1*H_Y*N_Y,+1*C_X+1*C_Y-2*N_Y,-2+1*H_X+1*H_Y,-1+1*J_Y+2*N_Y,-1+1*K_Y+1*N_Y,-1+1*G_Y,-1+1*G_X,-1+1*K_X,+1*L_Y+1*N_Y,-1+1*B_Y],);
print("A_y=0 D=(1,0,0) E_x=0 E_y=0 F_x=1 F_y=0 I_x=0 I_y=1 J=(1,J_y,0) L=(1,L_y,0) M=(0,1,0) N_x=0 ");
print(ABDEAFGNBHINCDFJCKLNDHKMEGHLEJMNFILMGIJK);
solve([+3/5+1*L_Y,-1/5+1*M_Y,-4/3+1*L_X,-2/3+1*M_X,+1/5+1*K_Y,+9/10+1*G_Y,+2/5+1*C_Y,-2/5+1*J_Y,+6/5+1*F_Y,-3/5+1*H_Y,-4/3+1*K_X,-2/3+1*J_X,-4/3+1*C_X,-2/3+1*E_X],);
print("A=(1,0,0) B_x=0 B_y=0 D_x=1 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_x=0 I_y=1 N=(0,1,0) ");
print(ABDEAFGNBHINCDFJCKLNDHKMEGIKEJMNFILMGHJL);
solve([+5+1*L_Y,+1+1*M_Y,-4+1*L_X,+3/2+1*G_Y,+2+1*J_Y,+6+1*C_Y,-3+1*I_Y,+2+1*F_Y,-2+1*J_X,-2+1*E_X,-2+1*M_X,+3+1*K_Y,-4+1*C_X,-4+1*K_X],);
print("A=(1,0,0) B_x=0 B_y=0 D_x=1 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 H_y=1 I_x=0 N=(0,1,0) ");
print(ADEFAGHIBDJKBELNCGJLCHKNDGMNEIKMFHLMFIJN);
solve([+1+1*M_Y+1/3*M_Y*M_Y,+2+1*K_X+1*M_Y,-3+1*K_Y-1*M_Y,-1+1*G_Y-1*M_Y,+1+1*I_X,+1+1*H_X+1*M_Y,+2+1*C_X+2*M_Y,-3+1*C_Y-1*M_Y,-3+1*H_Y-1*M_Y,+2+1*J_X+1*M_Y,+1*J_Y+1*M_Y,+2+1*B_X+1*M_Y,+1*I_Y+1*M_Y,+1*F_Y+1*M_Y],);
print("A_x=0 A_y=1 B_y=0 D=(0,1,0) E_x=0 E_y=0 F_x=0 G=(1,G_y,0) L_x=1 L_y=0 M=(1,M_y,0) N=(1,0,0) ");
print(ABCDAEFGBHIJCEHKCILMDELNDFJMFIKNGHMNGJKL);
solve([+1-1*M_Y+1/2*M_Y*M_Y,+2+1*B_X-1*M_Y,+1*K_X+1*M_Y,-1+1*K_Y+1*M_Y,+1+1*H_X,-2+1*F_Y+1*M_Y,-2+1*J_Y+2*M_Y,-1+1*F_X+1*M_Y,-1+1*I_Y,-3+1*G_Y+2*M_Y,-1+1*H_Y+1*M_Y,-1+1*E_Y+1*M_Y,+1*J_X+1*M_Y,+1*G_X+1*M_Y],);
print("A_x=1 A_y=0 B_y=0 C=(1,0,0) D_x=0 D_y=0 E_x=0 I=(1,I_y,0) L=(0,1,0) M=(1,M_y,0) N_x=0 N_y=1 ");
print(ABDEAFGHBIJNCFKNCILMDFJLDGMNEGIKEHLNHJKM);
solve([+1+1*N_Y+1*J_X*N_Y-1*M_X*N_Y,+1*C_X-1*C_X*M_Y-2*N_Y+1*C_X*N_Y+2*J_X*N_Y,+1*C_Y+2*N_Y-1*C_X*N_Y-1*M_X*N_Y,+1*J_X-1*J_X*M_Y+1*M_X*N_Y,+1*M_X-1*M_X*M_Y-1*N_Y+2*J_X*N_Y,+1*M_Y+1*N_Y-1*M_X*N_Y,+1+1*L_Y-1*M_Y,-2+1*F_X+1*M_X,-1+1*I_Y-1*N_Y,+1*D_Y+1*N_Y,-1+1*I_X,-1+1*K_X,+1*J_Y-1*M_Y,+1*K_Y-1*M_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 D_x=0 E=(0,1,0) F_y=0 G_x=1 G_y=0 H=(1,0,0) L=(1,L_y,0) N=(1,N_y,0) ");
print(ABEMAFGNBHINCEFJCKMNDGHMDJLNEHKLFILMGIJK);
solve([-3/2+1*H_X,+2+1*K_Y,-1/2+1*J_X,-2+1*L_Y,-4+1*E_Y,-3/2+1*G_X,-2+1*D_Y,-2+1*J_Y,+4+1*C_Y,-3/2+1*D_X,-1+1*I_X,-1+1*L_X,-1+1*H_Y,-1+1*I_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=0 F_x=1 F_y=0 G_y=0 K=(1,K_y,0) M=(0,1,0) N=(1,0,0) ");
print(ABEMAFGNBHINCFJKCHLMDFILDJMNEGHJEKLNGIKM);
solve([+1-1/2*B_Y*I_X,+1*B_Y-1*L_Y-1/2*B_Y*L_Y,+1*I_X-1/2*L_Y-1*I_X*L_Y,+1*D_X+1*I_X,+1*L_X+1/2*L_Y,-2+1*K_Y,-1+1*H_X+1/2*L_Y,+1+1*K_X,+2+1*E_Y,-1+1*C_X+1*L_Y,+1*C_Y-1*L_Y,+1*H_Y-1*L_Y,-2+1*I_Y,-2+1*G_Y],);
print("A=(0,1,0) B=(1,B_y,0) D_y=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=0 J_x=1 J_y=0 M=(1,0,0) N_x=0 N_y=0 ");
print(ABLMAFGNBHINCFJLCHKMDGHLDJMNEFIMEKLNGIJK);
solve([+1+3*K_Y+1*K_Y*K_Y,+1*C_X+4*K_Y+1*C_X*K_Y-1*C_Y*K_Y+2*K_Y*K_Y,+1*C_Y-2*K_Y+1*C_Y*K_Y-1*K_Y*K_Y,+1+1*I_Y,+1+1*E_Y+1*K_Y,-2+1*I_X-1*K_Y,-1+1*J_Y-1*K_Y,+1+1*H_Y+1*K_Y,-2+1*H_X-1*K_Y,+1+1*F_Y+1*K_Y,-1+1*K_X,-1+1*E_X,+1+1*G_Y,-2+1*B_X-1*K_Y],);
print("A=(1,0,0) B_y=0 D_x=0 D_y=1 F=(1,F_y,0) G=(1,G_y,0) J_x=0 L_x=1 L_y=0 M_x=0 M_y=0 N=(0,1,0) ");
print(ABEMACFNBGHNCIJMDGIKDLMNEHILEJKNFGJLFHKM);
solve([+1-1*L_Y+1*L_Y*L_Y,+1*K_X-1*L_Y,+1+1*D_Y-1*L_Y,-1+1*G_X-1*L_Y,+1*H_Y-1*L_Y,-1+1*I_Y-1*L_Y,+1*G_Y-1*L_Y,+1*B_Y-1*L_Y,-1+1*J_Y,-1+1*K_Y,-1+1*I_X,-1+1*J_X,+1*H_X-1*L_Y,+1*F_X-1*L_Y],);
print("A_x=0 A_y=0 B_x=0 C_x=1 C_y=0 D=(1,D_y,0) E_x=0 E_y=1 F_y=0 L=(1,L_y,0) M=(0,1,0) N=(1,0,0) ");
print(ADEFAGHNBDGIBJKNCDLNCEJMEHIKFHJLFIMNGKLM);
solve([+1-1*M_Y+1*G_X*M_Y,+1*K_Y+1*G_X*M_Y-1*K_X*M_Y,+1*B_X*K_Y-1*M_Y-1*B_X*M_Y+1*K_X*M_Y,+1*G_X*K_Y-1*M_Y,+1*K_X*K_Y+1*M_Y-1*K_X*M_Y,-2+1*C_X+1*K_X,+1*I_Y+1*K_Y-1*M_Y,+1*J_Y-1*K_Y,+1*E_Y-1*K_Y+1*M_Y,+1*B_Y-1*K_Y,-1+1*J_X,-1+1*L_X,-1+1*C_Y,-1+1*L_Y],);
print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(1,0,0) ");
print(ADEFAGHNBDIJBEKNCDGLCIMNEHJMFGKMFJLNHIKL);
solve([+1-3*M_Y+1*D_Y*M_Y+1*M_Y*M_Y,+1*D_Y-3*M_Y+2*D_Y*M_Y+1*M_Y*M_Y,+1*C_X*D_Y-2*M_Y+2*D_Y*M_Y+1*M_Y*M_Y,-2+1*B_Y+1*D_Y+1*M_Y,-1+1*I_X+2*M_Y,+1*L_X+1*M_Y,-1+1*M_X+1*M_Y,-1+1*J_X+1*M_Y,+1+1*K_Y,-1+1*H_X+1*M_Y,-1+1*J_Y,-1+1*L_Y,+1*I_Y-1*M_Y,+1*C_Y-1*M_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 E=(0,1,0) F_x=0 F_y=1 G_x=1 G_y=0 H_y=0 K=(1,K_y,0) N=(1,0,0) ");
print(ADEFAGHNBDIJBEKNCDGLCIMNEHLMFHIKFJLNGJKM);
solve([+1-1*M_X+1*K_Y*M_X,+1*D_Y-1*D_Y*E_X-1*K_Y,+1*B_X*D_Y-1*D_Y*M_X+1*K_Y*M_X,+1*E_X-1*K_Y-1*E_X*K_Y,+1*I_X+1*K_Y-1*I_X*K_Y-2*M_X+2*K_Y*M_X,+1*D_Y*I_X+1*M_X-1*D_Y*M_X,-1+1*H_Y+1*K_Y,-1+1*M_Y,+1*A_Y+1*D_Y,-1+1*I_Y,+1*B_Y-1*K_Y,+1*E_Y-1*K_Y,+1*K_X-1*M_X,+1*J_X-1*M_X],);
print("A=(1,A_y,0) C_x=0 C_y=1 D_x=0 F_x=1 F_y=0 G=(0,1,0) H=(1,H_y,0) J_y=0 L_x=0 L_y=0 N=(1,0,0) ");
print(ADEFAGHNBDIJBEKNCFGKCILNDGLMEHIMFJMNHJKL);
solve([+1+1*J_X*L_Y-1*J_X*M_Y,+1*J_X+1*M_Y-1*J_X*M_Y,+1*K_Y+1*L_Y+1*K_Y*L_Y-1*K_Y*M_Y,+1*J_X*K_Y+1*L_Y+1*K_Y*L_Y-1*M_Y-1*K_Y*M_Y,+1*L_X+1*L_Y-1*M_Y,-1+1*G_X+1*J_X,+1*C_X+1*J_X+1*L_Y-1*M_Y,+1+1*B_Y-1*L_Y,-1+1*I_X,-1+1*M_X,+1*J_Y-1*M_Y,+1*F_Y-1*M_Y,+1*C_Y-1*L_Y,+1*I_Y-1*L_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 D_y=1 E=(0,1,0) F_x=0 G_y=0 H_x=1 H_y=0 K=(1,K_y,0) N=(1,0,0) ");
print(ADEFAGHNBDIJBEKNCFGKCILNDGLMEHJLFJMNHIKM);
solve([+1+1*L_Y*M_Y-1*M_Y*M_Y,+1*I_Y-1*B_Y*L_Y+1*I_Y*M_Y,+1*L_Y-1*M_Y+1*I_Y*M_Y-1*J_Y*M_Y-1*L_Y*M_Y+1*M_Y*M_Y,+1*I_Y*L_Y-1*L_Y*L_Y-1*J_Y*M_Y+1*M_Y*M_Y,+1*J_Y*L_Y-1*I_Y*M_Y,+1+1*H_Y+1*L_Y-1*M_Y,-1+1*B_X+1*B_Y,+1*I_X+1*I_Y-1*L_Y+1*M_Y,+1*J_X+1*J_Y,+1*C_Y-1*L_Y+1*M_Y,+1*M_X+1*M_Y,+1*L_X+1*M_Y,+1+1*N_Y,+1*D_X+1*M_Y],);
print("A=(1,0,0) C_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=0 G=(0,1,0) H=(1,H_y,0) K_x=0 K_y=1 N=(1,N_y,0) ");
print(ABEFAGHMBIMNCEJNCFKMDGKNDJLMEGILFHLNHIJK);
solve([+1-1*I_X*K_Y+1*J_X*K_Y-1*L_Y,+1*E_Y+1*J_X-1*E_Y*J_X-1*L_Y,+1*I_X-2*I_X*K_Y+2*J_X*K_Y+2*L_Y-2*I_X*L_Y,+1*E_Y*I_X+1*J_X-1*E_Y*J_X+1*L_Y-1*I_X*L_Y,+1*K_Y-1*J_X*K_Y+1*L_Y,-1+1*D_X+1*I_X-1*J_X,-2+1*G_X+1*I_X,-1+1*C_Y+1*E_Y,-1+1*N_Y,-1+1*I_Y,-1+1*N_X,-1+1*L_X,+1*J_Y-1*L_Y,+1*D_Y-1*L_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=0 F=(0,1,0) G_y=0 H_x=1 H_y=0 K=(1,K_y,0) M=(1,0,0) ");
print(ABEMAFGNBHINCFHJCKLNDEGKDJMNEIJLFIKMGHLM);
solve([+5+1*C_X,+1/3+1*J_Y,+2+1*L_X,-2+1*L_Y,-2/3+1*D_Y,-4/3+1*E_Y,-1+1*H_Y,-2+1*C_Y,-2+1*K_Y,-1+1*I_Y,-1+1*K_X,-1+1*I_X,+2+1*H_X,+2+1*G_X],);
print("A_x=0 A_y=0 B_x=0 B_y=1 D=(1,D_y,0) E_x=0 F_x=1 F_y=0 G_y=0 J=(1,J_y,0) M=(0,1,0) N=(1,0,0) ");
print(ACDEAFGHBCFIBDJKCGLMDHLNEGJNEIKLFKMNHIJM);
solve([+1-2*N_Y*N_Y,+1*M_X+2*N_Y,+1*B_Y-1*N_Y,-2+1*K_X,-1+1*D_Y,-2+1*E_X-2*N_Y,+1+1*J_Y,+1+1*A_Y,-1+1*K_Y-2*N_Y,-1+1*E_Y-2*N_Y,-1+1*I_Y-2*N_Y,-1+1*B_X+1*N_Y,+1*I_X+2*N_Y,+1*J_X+2*N_Y],);
print("A_x=0 C_x=1 C_y=0 D=(1,D_y,0) F_x=0 F_y=1 G_x=0 G_y=0 H=(0,1,0) L=(1,0,0) M_y=0 N=(1,N_y,0) ");
print(ACDEAFGHBCFIBDJKCGLMDHLNEHJMEIKLFKMNGIJN);
solve([+1+1*C_X*L_Y-1*E_X*L_Y,+1*A_X+1/2*A_X*I_Y+2*C_X*L_Y-1*E_X*L_Y-1*J_X*L_Y,+1*C_X+1/2*C_X*I_Y+1*C_X*L_Y-1/2*E_X*L_Y-1/2*J_X*L_Y,+1*E_X+1/2*E_X*I_Y+1*C_X*L_Y,+1*E_Y-1*E_X*L_Y,+1*I_Y-1*J_X*L_Y,+1*J_X+1/2*I_Y*J_X+1*C_X*L_Y-1*E_X*L_Y,+1+1*H_Y+1/2*I_Y,-2+1*F_Y-1*I_Y,-1+1*G_Y-1*I_Y,+1*A_Y-1*E_Y,+1*C_Y-1*E_Y,+1*I_X-1*J_X,+1*G_X-1*J_X],);
print("B_x=1 B_y=0 D=(1,0,0) F_x=0 H=(1,H_y,0) J_y=0 K_x=0 K_y=0 L=(1,L_y,0) M_x=0 M_y=1 N=(0,1,0) ");
print(ABDEAFGNBHINCDFJCHKLDKMNEGIKEJLNFILMGHJM);
solve([+1-1*L_X+1*L_X*L_Y,+1*C_X-1*L_X+1/2*L_Y-1*C_X*L_Y+1*L_X*L_Y,+1*I_Y-1*C_X*I_Y+1*L_X-1/2*L_Y+1*C_X*L_Y-1*L_X*L_Y,+1*I_Y*L_X-1*L_Y-1*L_X*L_Y,+1*C_Y-1*I_Y,+1+1*H_Y-1*I_Y-1*L_Y,+2+1*G_Y-1*I_Y-1*L_Y,+1+1*F_Y-1*I_Y,-2+1*K_Y+1*L_Y,+1+1*J_Y-1*L_Y,+1*J_X-1*L_X,-1+1*I_X,+1*E_X-1*L_X,-1+1*H_X],);
print("A=(1,0,0) B_x=1 B_y=0 D_x=0 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) K_x=0 M_x=0 M_y=1 N=(0,1,0) ");
print(ABFLAGHMBIMNCDLMCFJNDGKNEHLNEJKMFHIKGIJL);
solve([+1/4+1*E_Y,-3+1*M_X,+1/2+1*N_Y,+1+1*K_X,+1+1*D_Y,-1/2+1*J_Y,+1/2+1*C_Y,-3/2+1*B_Y,-3+1*C_X,-3+1*D_X,-1+1*I_Y,-1+1*K_Y,-1+1*I_X,-1+1*J_X],);
print("A_x=0 A_y=0 B_x=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=1 G_y=0 H=(1,0,0) L=(0,1,0) M_y=0 N=(1,N_y,0) ");
print(ABEMAFGHBIJNCFMNCIKLDGIMDHKNEFJKEGLNHJLM);
solve([+1-1*L_Y-1*L_Y*L_Y,+1+1*C_Y-1*L_Y,+1*D_Y+1*L_Y,+1*K_X+1*L_Y,-1+1*I_Y+1*L_Y,-2+1*B_Y+1*L_Y,-1+1*L_X+1*L_Y,-1+1*I_X,-1+1*J_Y,-1+1*K_Y,+1+1*N_Y,-1+1*D_X,-1+1*J_X+1*L_Y,-1+1*H_X+1*L_Y],);
print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
print(ADEFAGHIBDGJBHKNCDLNCIKMEGMNEJKLFHLMFIJN);
solve([-1/2+1*B_Y,-1/5+1*C_Y,-2+1*D_Y,-1/3+1*L_Y,-1/3+1*K_X,-3/5+1*C_X,-1/4+1*B_X,-1/2+1*N_X,-1/6+1*J_X,-1/2+1*I_Y,-2/3+1*L_X,-1/3+1*J_Y,-1/3+1*K_Y,+1+1*F_Y],);
print("A=(0,1,0) D=(1,D_y,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H_x=0 H_y=1 I_x=0 M_x=1 M_y=0 N_y=0 ");
print(ABFLAGHMBIJNCFMNCGILDHLNDIKMEGKNEJLMFHJK);
solve([+1+1*K_Y+1*K_Y*K_Y,+1*K_X+2*K_Y,+1+1*G_Y+1/2*K_Y,+1/2+1*H_Y,+1+1*E_Y+1*K_Y,-1+1*D_Y-1*K_Y,-2+1*C_Y-1*K_Y,-2+1*L_X,-1+1*I_Y-2*K_Y,+1*I_X+2*K_Y,+1+1*J_Y,-2+1*E_X,-2+1*J_X,+1*D_X+2*K_Y],);
print("A=(1,0,0) B_x=1 B_y=0 C_x=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) L_y=0 M=(0,1,0) N_x=0 N_y=1 ");
print(ABCNADEFBGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
solve([+1-1*M_Y+1*M_Y*M_Y,+1*C_X+1*C_Y-1*M_Y-1*C_X*M_Y+1*M_Y*M_Y,+1*A_Y+1*C_X-1*M_Y,+1+1*K_Y-1*M_Y,-1+1*M_X+1*M_Y,+1+1*E_Y-1*M_Y,+1*A_X-1*C_X,-1+1*L_X,-1+1*E_X,+1*B_X-1*C_X,+1+1*D_Y,+1*L_Y-1*M_Y,+1*F_Y-1*M_Y],);
print("B_y=0 D=(1,D_y,0) F_x=0 G_x=1 G_y=0 H=(1,0,0) I_x=0 I_y=0 J_x=0 J_y=1 K=(1,K_y,0) N=(0,1,0) ");
print(ABFLACGMBHMNCILNDGJNDIKMEFKNEJLMFHIJGHKL);
solve([+3+1*D_X,-2/3+1*N_Y,+1+1*N_X,-1/3+1*E_Y,-4/3+1*K_Y,+1/3+1*J_Y,-4/3+1*I_Y,-4/3+1*D_Y,+1+1*I_X,-2/3+1*H_Y,+1+1*C_X,-2/3+1*B_Y,-1+1*K_X,-1+1*H_X],);
print("A_x=0 A_y=0 B_x=0 C_y=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=1 G_y=0 J=(1,J_y,0) L=(0,1,0) M=(1,0,0) ");
print(ABDEAFGHBIJNCFIKCGLNDFMNDJKLEGJMEHKNHILM);
solve([+1-3*M_Y+1*M_Y*M_Y,-1+1*L_Y+3*M_Y,-1/2+1*A_X,+1*L_X-1*M_Y,+1+1*H_Y,+1+1*I_Y+1*M_Y,+1*K_Y+1*M_Y,-2+1*C_Y+4*M_Y,-1+1*G_Y+2*M_Y,+1*C_X-1*M_Y,-1+1*H_X,-1+1*K_X,+1*J_Y+1*M_Y,+1*G_X-1*M_Y],);
print("A_y=0 B=(1,0,0) D_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=1 I=(1,I_y,0) J=(1,J_y,0) M_x=0 N=(0,1,0) ");
print(ADEFAGHIBDJKBGLNCDMNCEHLEIJNFGJMFHKNIKLM);
solve([+1+1*L_X*N_Y,+1*B_Y+3*N_Y+1*B_Y*N_Y-2*L_X*N_Y+1*N_Y*N_Y,+1*L_X+1*N_Y+1/2*L_X*N_Y+1/2*N_Y*N_Y,+1+1*K_X-2*L_X,-2+1*M_X-1*N_Y,+1+1*M_Y+1*N_Y,+2+1*D_Y-2*L_X+1*N_Y,+3+1*C_Y-2*L_X+1*N_Y,+2+1*B_X+1*B_Y-2*L_X+1*N_Y,+1*H_X-1*L_X,+1+1*J_Y,+1*C_X-1*L_X,+1+1*K_Y+1*N_Y,+1+1*L_Y+1*N_Y],);
print("A_x=0 A_y=0 D_x=0 E=(0,1,0) F_x=0 F_y=1 G_x=1 G_y=0 H_y=0 I=(1,0,0) J=(1,J_y,0) N=(1,N_y,0) ");
print(AEFGAHIMBEHJBFMNCEKNCJLMDGKMDHLNFIKLGIJN);
solve([+1/6+1*L_Y,+2+1*H_Y,-1/6+1*C_Y,-1/2+1*E_X,-1/3+1*L_X,+1/2+1*K_Y,+3/2+1*D_Y,-1/2+1*N_Y,-1/3+1*J_Y,-1+1*K_X,-1/3+1*J_X,-1+1*D_X,+1/2+1*I_Y,-1/3+1*C_X],);
print("A=(1,0,0) B_x=0 B_y=1 E_y=0 F_x=0 F_y=0 G_x=1 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
print(ABDEAFGHBIJNCFIKCGLNDFMNDHJLEHKNEILMGJKM);
solve([+1-2*A_X*M_Y,+1*A_X-1*A_X*L_Y-1*M_Y-1*A_X*M_Y+1*L_Y*M_Y-2*M_Y*M_Y,+1*L_Y-1*M_Y-1*L_Y*M_Y+2*M_Y*M_Y,+1*L_X+1*L_Y-2*M_Y,-1+1*H_Y+2*M_Y,-1+1*K_Y+1*M_Y,-1+1*J_Y+2*M_Y,-1+1*C_Y-1*L_Y+1*M_Y,+1*G_Y-1*L_Y-1*M_Y,-1+1*K_X,+1*I_Y+1*M_Y,+1*C_X+1*L_Y-2*M_Y,+1*G_X+1*L_Y-2*M_Y,-1+1*H_X],);
print("A_y=0 B=(1,0,0) D_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=1 I=(1,I_y,0) J=(1,J_y,0) M_x=0 N=(0,1,0) ");
print(ABEFACGMBHMNCIJNDEKNDILMEHJLFGLNFJKMGHIK);
solve([+1+9/5*N_Y+4/5*N_Y*N_Y,+1*L_Y+2/5*N_Y+1*L_Y*N_Y+2/5*N_Y*N_Y,+8/5+1*K_X+8/5*N_Y,-7/5+1*L_X+1*L_Y-2/5*N_Y,-5+1*H_Y-6*N_Y,+4/5+1*J_X+4/5*N_Y,+1+1*E_Y+2*N_Y,-3/5+1*I_X+1*L_Y+2/5*N_Y,+1/5+1*D_X+1*L_Y+6/5*N_Y,-9/5+1*G_X-4/5*N_Y,-1+1*J_Y,-1+1*K_Y,+1*D_Y-1*L_Y,+1*I_Y-1*L_Y],);
print("A_x=0 A_y=0 B=(0,1,0) C_x=1 C_y=0 E_x=0 F_x=0 F_y=1 G_y=0 H=(1,H_y,0) M=(1,0,0) N=(1,N_y,0) ");
print(ACDEBCFGBHINCJKNDFLNDHJMEGMNEHKLFIKMGIJL);
solve([+1*L_Y+1*I_X*N_Y-1*M_X*N_Y,+1*I_X*L_Y+1*N_Y+1*I_X*N_Y-2*M_X*N_Y,+1*L_Y*M_X+1*I_X*N_Y-2*M_X*N_Y,+1*M_Y+1*N_Y-1*M_X*N_Y,+1+1*K_X-1*M_X,-1+1*B_X-1*I_X+1*M_X,+1*H_Y-1*L_Y-1*M_Y,+1*J_Y-1*M_Y-1*N_Y,+1*J_X-1*M_X,+1*I_Y-1*M_Y,+1*K_Y-1*M_Y,+1*E_Y+1*N_Y,+1*H_X-1*M_X],);
print("A_x=0 A_y=1 B_y=0 C_x=0 C_y=0 D=(0,1,0) E_x=0 F=(1,0,0) G_x=1 G_y=0 L=(1,L_y,0) N=(1,N_y,0) ");
print(AEFGAHIMBEHJBFMNCEKNCJLMDGKMDIJNFIKLGHLN);
solve([-1/6+1*L_Y,-1/2+1*I_Y,-1/4+1*K_Y,-1/3+1*C_Y,-3/4+1*D_Y,-1/2+1*N_Y,-1/3+1*L_X,-1/2+1*K_X,-2/3+1*J_Y,-1/2+1*D_X,-1/3+1*C_X,-1/2+1*G_X,+1+1*H_Y,-1/3+1*J_X],);
print("A=(1,0,0) B_x=0 B_y=1 E_x=1 E_y=0 F_x=0 F_y=0 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
print(ABCDAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN);
solve([+1-1*N_Y+1*A_Y*N_Y+1*J_X*N_Y,+1*J_X-1*N_Y+1*A_Y*N_Y,-1+1*E_X+1*J_X,-1+1*I_Y+1*J_X-1*N_Y,-1+1*G_Y+1*J_X,+1+1*F_Y-1*N_Y,+1*K_Y-1*N_Y,-1+1*K_X,-1+1*I_X,-1+1*A_X+1*A_Y,-1+1*E_Y+1*J_X-1*N_Y,+1*B_X-1*J_X+1*N_Y,-1+1*B_Y+1*J_X-1*N_Y],);
print("C_x=0 C_y=1 D_x=1 D_y=0 F=(1,F_y,0) G_x=0 H=(1,0,0) J_y=0 L_x=0 L_y=0 M=(0,1,0) N=(1,N_y,0) ");
print(ABDNAEFGBHIJCEHKCILNDFIMDGKLEJLMFJKNGHMN);
solve([+1+8/5*M_Y+1*M_Y*M_Y,-2/15+1*L_X+1/3*M_Y,-1/3+1*L_Y+1/3*M_Y,-13/15+1*K_X-1/3*M_Y,-4/3+1*C_Y-2/3*M_Y,+5/3+1*H_Y+1/3*M_Y,+1/3+1*J_Y+2/3*M_Y,-2/3+1*I_Y-1/3*M_Y,-1/3+1*K_Y+1/3*M_Y,-1/3+1*D_Y+1/3*M_Y,-2/15+1*C_X+1/3*M_Y,-2/15+1*I_X+1/3*M_Y,-13/15+1*J_X-1/3*M_Y,-13/15+1*F_X-1/3*M_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 D_x=0 E_x=1 E_y=0 F_y=0 G=(1,0,0) H=(1,H_y,0) M=(1,M_y,0) N=(0,1,0) ");
print(ABEFAGHMBIMNCDJMCEKNDGLNEHILFHJNFKLMGIJK);
solve([-1/2+1*L_X,+1+1*J_Y,-1+1*K_X,-3+1*C_X,-5/2+1*D_X,-3/2+1*G_X,-2+1*J_X,+2+1*I_Y,+1+1*N_Y,-2+1*E_Y,-1+1*K_Y,-1+1*L_Y,+1+1*D_Y,+1+1*C_Y],);
print("A_x=0 A_y=0 B=(0,1,0) E_x=0 F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M=(1,0,0) N=(1,N_y,0) ");
print(AEFGAHIMBEHJBFMNCEKNCGLMDHLNDJKMFIKLGIJN);
solve([+1+1*N_Y+1/2*N_Y*N_Y,-1/2+1*D_X+1/2*N_Y,-1/2+1*C_X-1/2*N_Y,-1/2+1*L_X,+1*J_X+1/2*N_Y,-1+1*K_Y-1/2*N_Y,+1*L_Y+1/2*N_Y,+1+1*B_Y,-1+1*J_Y-1/2*N_Y,-1+1*D_Y-1/2*N_Y,-1/2+1*K_X,-1/2+1*I_X,+1*G_Y+1/2*N_Y,+1*C_Y+1/2*N_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) E_x=0 E_y=1 F=(0,1,0) G_x=0 H_x=1 H_y=0 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
print(ABEFAGHMBIJNCEMNCGIKDGLNDJKMEHJLFHKNFILM);
solve([+1-1*L_X+1/3*L_X*L_X,+1+1*H_Y-1/3*L_X,+1+1*K_Y-1*L_X,+2+1*G_Y-2/3*L_X,+3+1*D_Y-2*L_X,-3+1*K_X+1*L_X,-3+1*C_Y+1*L_X,+1+1*L_Y,-3+1*D_X+1*L_X,+2+1*J_Y-1*L_X,-1+1*I_Y+1*L_X,-3+1*J_X+1*L_X,+1*I_X-1*L_X,+1*F_X-1*L_X],);
print("A=(1,0,0) B_x=1 B_y=0 C_x=0 E_x=0 E_y=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) M=(0,1,0) N_x=0 N_y=1 ");
print(ABEMAFGNBHINCEFJCHKMDGIKDJMNEKLNFILMGHJL);
solve([+4/3+1*N_Y,-1/2+1*M_X,-1+1*D_X,+2/3+1*L_Y,-3/2+1*K_X,+1/2+1*H_X,-2+1*H_Y,+2+1*K_Y,+2/3+1*D_Y,+8/3+1*G_Y,-2/3+1*J_Y,-2/3+1*I_Y,-1/2+1*I_X,-1/2+1*L_X],);
print("A=(1,0,0) B_x=1 B_y=0 C_x=0 C_y=1 E_x=0 E_y=0 F=(0,1,0) G=(1,G_y,0) J_x=0 M_y=0 N=(1,N_y,0) ");
print(ABFLAGHMBIMNCFJNCGILDFKMDHLNEGKNEJLMHIJK);
solve([+1+4/3*N_Y+1/3*N_Y*N_Y,+1*C_Y+2/3*N_Y+1*C_Y*N_Y+2/3*N_Y*N_Y,-2+1*K_Y-1*N_Y,+2/3+1*K_X+2/3*N_Y,+1/3+1*E_X+1/3*N_Y,+1/3+1*D_X+1/3*N_Y,-1+1*C_X+1*C_Y,-4/3+1*H_X-1/3*N_Y,-1/3+1*J_X-1/3*N_Y,-2+1*F_Y-1*N_Y,-1+1*E_Y,-1+1*J_Y,-2+1*D_Y-1*N_Y,+1+1*I_Y],);
print("A_x=0 A_y=0 B=(0,1,0) F_x=0 G_x=1 G_y=0 H_y=0 I=(1,I_y,0) L_x=0 L_y=1 M=(1,0,0) N=(1,N_y,0) ");
print(ABEMAFGHBIJNCFIKCGMNDFLNDJKMEGJLEHKNHILM);
solve([+1-1*K_Y-1*K_Y*K_Y,+2+1*C_Y-2*K_Y,-1/2+1*K_X+1/2*K_Y,-1/2+1*L_X,-1+1*I_Y+1*K_Y,-2+1*B_Y+1*K_Y,-1+1*D_Y-1*K_Y,+2+1*N_Y,-1+1*L_Y,-1+1*J_Y,-1/2+1*D_X+1/2*K_Y,-1/2+1*J_X+1/2*K_Y,-1/2+1*I_X,-1/2+1*H_X],);
print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F_x=1 F_y=0 G=(1,0,0) H_y=0 M=(0,1,0) N=(1,N_y,0) ");
print(ABMNAEFGBEHICFJMCHKNDFLNDIKMEJKLGHLMGIJN);
solve([+1-2*N_Y+2*N_Y*N_Y,-1+1*K_Y,-1+1*C_Y+2*N_Y,-1/2+1*L_X,+1*K_X-1*N_Y,+1*J_Y+2*N_Y,+1*D_X-1*N_Y,-1+1*I_Y+1*N_Y,+1*L_Y-1*N_Y,+1*D_Y-1*N_Y,-1/2+1*H_Y,-1/2+1*G_X,+1*I_X-1*N_Y,-1/2+1*H_X],);
print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=1 E_y=0 F=(1,0,0) G_y=0 J=(1,J_y,0) M=(0,1,0) N_x=0 ");
print(ABDNAEFGBHIJCEKLCFHNDGIKDHLMEIMNFJKMGJLN);
solve([+1+1*M_Y+2*J_Y*M_Y,+1*J_Y-1*M_Y+2*J_Y*M_Y-1*M_Y*M_Y,+1*K_X+1*M_Y,+1*H_X-2*J_Y+1*M_Y,-1+1*B_Y-1*J_Y,-1+1*H_Y+1*J_Y-1*M_Y,-1+1*L_Y-1*M_Y,-1+1*K_Y-1*M_Y,+1+1*I_Y,+1*F_X-2*J_Y+1*M_Y,-1+1*C_Y-1*M_Y,+1*C_X-2*J_Y+1*M_Y,-1+1*L_X,-1+1*J_X],);
print("A_x=0 A_y=0 B_x=0 D_x=0 D_y=1 E=(1,0,0) F_y=0 G_x=1 G_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(0,1,0) ");
print(ABEFACGMBHMNCIJNDEKNDHILEJLMFGLNFIKMGHJK);
solve([+1-1/2*N_X-1*N_Y-1/2*N_X*N_Y,+1*I_X-1/2*N_X+1*I_X*N_Y-1/2*N_X*N_Y,+1*J_Y-1*J_Y*N_X+1*N_Y,+1*I_X*J_Y-1/2*N_X-1*J_Y*N_X-1/2*N_X*N_Y,-1/2+1*D_Y-1/2*N_Y,+1/2+1*L_Y+1/2*N_Y,+1*H_X+1*I_X-2*N_X,-1+1*G_X+1*I_X-1*N_X,+1*D_X-1*N_X,+1*K_X-1*N_X,-1+1*I_Y,-1+1*K_Y,+1*H_Y-1*N_Y,+1*B_Y-1*N_Y],);
print("A_x=0 A_y=0 B_x=0 C_x=1 C_y=0 E=(0,1,0) F_x=0 F_y=1 G_y=0 J=(1,J_y,0) L=(1,L_y,0) M=(1,0,0) ");
print(ABDNAEFGBEHICFJKCHLNDGJLDHKMEJMNFILMGIKN);
solve([+1+1*L_Y-1*L_Y*M_X,+1*A_Y+1*M_X-1*A_Y*M_X+1*L_Y*M_X,+1*C_Y-1*C_Y*M_X+1*L_Y*M_X,+1*A_Y*F_X-1*A_Y*M_X+1*F_Y*M_X,+1*C_Y*F_X-1*F_X*L_Y-1*C_Y*M_X+2*L_Y*M_X,+1*F_Y+1*L_Y-1*F_X*L_Y,-1+1*G_Y-1*L_Y,-2+1*J_Y-1*L_Y,+1*J_X-1*M_X,+1*E_X-1*M_X,-1+1*K_Y,-1+1*M_Y,-1+1*K_X,-1+1*G_X],);
print("A_x=0 B_x=0 B_y=0 C=(1,C_y,0) D_x=0 D_y=1 E_y=0 H=(1,0,0) I_x=1 I_y=0 L=(1,L_y,0) N=(0,1,0) ");
print(ABEFAGHMBIMNCDJNCGIKDELMEHKNFGLNFJKMHIJL);
solve([+5/4+1*C_Y,-3/4+1*C_X,+1/2+1*N_Y,-1/2+1*N_X,+1+1*L_Y,+2+1*J_Y,+1+1*K_Y,+3/2+1*I_Y,+1+1*H_Y,-1/2+1*I_X,-1+1*K_X,-1+1*J_X,-1+1*G_Y,-1/2+1*B_X],);
print("A=(1,0,0) B_y=0 D_x=0 D_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G=(1,G_y,0) H=(1,H_y,0) L_x=0 M=(0,1,0) ");
print(ABMNAEFGBEHICFJMCGKNDHKMDIJNEJKLFHLNGILM);
solve([+1*L_Y*L_Y+1*M_Y+2*L_Y*M_Y,+1*K_X-1*L_Y-2*M_Y,-1+1*J_X+1*L_Y+2*M_Y,+1+1*D_Y-1*L_Y-3*M_Y,+1*I_Y-1*L_Y-2*M_Y,+1*K_Y+1*L_Y+1*M_Y,+1+1*H_Y,-1+1*I_X+1*L_Y+2*M_Y,-1+1*D_X+1*L_Y+2*M_Y,+1*C_Y-1*M_Y,+1*G_X-1*L_Y-2*M_Y,+1*J_Y-1*M_Y,+1*C_X-1*L_Y-2*M_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 E_x=1 E_y=0 F=(1,0,0) G_y=0 H=(1,H_y,0) L=(1,L_y,0) M_x=0 N=(0,1,0) ");
print(ABMNAEFGBHIJCEKLCFHMDEINDJKMFJLNGHKNGILM);
solve([+1-3*N_Y+5/2*N_Y*N_Y,+1+1*K_X-5/2*N_Y,-2+1*L_Y+4*N_Y,-2+1*H_X+5/2*N_Y,+2+1*C_Y-3*N_Y,-1+1*D_Y+1*N_Y,-2+1*J_Y+2*N_Y,+1*I_Y+1*N_Y,+1+1*D_X-5/2*N_Y,+1+1*J_X-5/2*N_Y,-2+1*C_X+5/2*N_Y,-2+1*F_X+5/2*N_Y,+1*K_Y-1*N_Y,+1*H_Y-1*N_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 E_x=1 E_y=0 F_y=0 G=(1,0,0) I=(1,I_y,0) L=(1,L_y,0) M=(0,1,0) N_x=0 ");
print(AEFGAHIMBEHJBFKNCEMNCIKLDGKMDIJNFJLMGHLN);
solve([+1+1/2*N_Y-1/2*L_X*N_Y,+1*C_Y-1/2*N_Y,-1/2+1*J_X-1/2*L_X,+1*K_X+1*L_X,-1/2+1*D_X+1/2*L_X,+1+1*K_Y+1*N_Y,-2+1*B_Y-1*N_Y,+1+1*G_Y+1*N_Y,-1/2+1*H_X-1/2*L_X,-1+1*J_Y,-1+1*L_Y,-1/2+1*B_X-1/2*L_X,+1+1*D_Y+1*N_Y],);
print("A_x=0 A_y=0 C=(1,C_y,0) E=(0,1,0) F_x=0 F_y=1 G_x=0 H_y=0 I_x=1 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
print(ABDEAFGHBIJNCDIKCFLNDGMNEGJLEHKNFJKMHILM);
solve([-4/3+1*K_X,-8/3+1*L_X,+3+1*L_Y,+9/4+1*J_Y,+2+1*K_Y,+3/2+1*I_Y,+1+1*H_Y,-3+1*G_Y,+4+1*C_Y,+5+1*F_Y,-4/3+1*H_X,-8/3+1*C_X,-8/3+1*F_X,-4/3+1*E_X],);
print("A_x=1 A_y=0 B=(1,0,0) D_x=0 D_y=0 E_y=0 G_x=0 I=(1,I_y,0) J=(1,J_y,0) M_x=0 M_y=1 N=(0,1,0) ");
print(ABDNAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN);
solve([+1*K_Y+1*M_Y+1*K_Y*M_Y,+1+1*C_X+1*K_Y+1*M_Y,-1+1*A_Y-1*K_Y-1*M_Y,+1*F_Y-1*K_Y-1*M_Y,+1*G_X+1*K_Y+1*M_Y,+1*J_X+1*K_Y,+1*M_X+1*M_Y,+1*I_Y+1*K_Y,+1*A_X+1*K_Y+1*M_Y,+1*G_Y-1*M_Y,+1+1*N_Y,+1*C_Y-1*M_Y,+1*F_X+1*K_Y+1*M_Y],);
print("B_x=0 B_y=1 D_x=1 D_y=0 E=(0,1,0) H_x=0 H_y=0 I_x=0 J_y=0 K=(1,K_y,0) L=(1,0,0) N=(1,N_y,0) ");
print(ABMNCDEFCGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
solve([+1-1*L_Y+1*L_Y*L_Y,+1*C_Y-1*L_Y+1*C_Y*L_Y,+1*C_X-1*C_Y,+1*K_X-1*L_Y,+1*G_Y-1*L_Y,+1*E_Y-1*L_Y,+1*I_X-1*L_Y,+1*E_X-1*L_Y,-1+1*F_X,-1+1*L_X,-1+1*I_Y,-1+1*F_Y],);
print("A=(1,A_y,0) B=(1,B_y,0) D_x=0 D_y=0 G_x=0 H_x=1 H_y=0 J_x=0 J_y=1 K_y=0 M=(0,1,0) N=(1,0,0) ");
print(ADEFAGHIBDGJBHKNCEKLCFJNDILNEGMNFHLMIJKM);
solve([+1+3*N_Y+2*N_Y*N_Y,+1*C_Y+8/3*N_Y+1*C_Y*N_Y+8/3*N_Y*N_Y,-5/3+1*J_X-2/3*N_Y,-2/3+1*M_Y-2/3*N_Y,-1/3+1*C_X+1*C_Y+2/3*N_Y,+1/3+1*K_X+4/3*N_Y,+1/3+1*B_Y+1/3*N_Y,-1/3+1*M_X+2/3*N_Y,-1/3+1*E_Y+2/3*N_Y,-5/3+1*B_X-2/3*N_Y,+1+1*L_Y,-5/3+1*G_X-2/3*N_Y,-2/3+1*K_Y-2/3*N_Y,-2/3+1*J_Y-2/3*N_Y],);
print("A_x=0 A_y=0 D=(0,1,0) E_x=0 F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,0,0) L=(1,L_y,0) N=(1,N_y,0) ");
print(ABFLAGHMBIMNCDLNCGIJDFKMEGKNEJLMFHJNHIKL);
solve([+1-1*L_Y*L_Y,+1*C_Y-2*L_Y-1*C_Y*L_Y+2*L_Y*L_Y,-1+1*K_X+1*L_Y,+1*C_X+1*C_Y-1*L_Y,+1+1*D_X-1*L_Y,-2+1*E_X+2*L_Y,-2+1*G_X+1*L_Y,-1+1*J_X+1*L_Y,+1*J_Y-1*L_Y,+1*E_Y-1*L_Y,+1+1*N_Y,-1+1*D_Y,+1*I_Y+1*L_Y,-1+1*K_Y],);
print("A_x=0 A_y=0 B=(0,1,0) F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) L_x=0 M=(1,0,0) N=(1,N_y,0) ");
print(ABEMAFGHBIJNCEIKCFMNDGKNDHJMEHLNFJKLGILM);
solve([+1+4*N_Y+3*N_Y*N_Y,-4+1*J_X-3*N_Y,+2+1*K_X+3*N_Y,-2+1*I_Y-2*N_Y,+1+1*D_Y+1*N_Y,-2+1*B_Y-1*N_Y,-1+1*C_Y-2*N_Y,-1+1*L_Y-1*N_Y,-4+1*H_X-3*N_Y,-4+1*D_X-3*N_Y,-1+1*K_Y-1*N_Y,-1+1*J_Y-1*N_Y,-1+1*I_X,-1+1*L_X],);
print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
print(ABLMAFGHBIJNCFKNCGILDFJMDHLNEGMNEJKLHIKM);
solve([+1-1*K_Y-1*K_Y*K_Y,+1*C_X+1*K_Y-1*C_X*K_Y,-1+1*J_X+2*K_Y,+1/2+1*B_Y,-1+1*D_X+1*K_Y,-1+1*E_X+1*K_Y,+1+1*I_X,-1+1*F_Y+1*K_Y,+1*K_X+1*K_Y,-1+1*I_Y,+1*J_Y-1*K_Y,+1*E_Y-1*K_Y,-1+1*C_Y,+1+1*M_Y],);
print("A=(0,1,0) B=(1,B_y,0) D_y=0 F_x=0 G_x=0 G_y=1 H_x=0 H_y=0 L=(1,0,0) M=(1,M_y,0) N_x=1 N_y=0 ");
print(ABEMAFGHBIJNCFIKCGLNDEJLDFMNEHKNGJKMHILM);
solve([+1-2*N_Y-3*N_Y*N_Y,-5/2+1*C_X-3/2*N_Y,+1/2+1*L_X+3/2*N_Y,-1/2+1*D_Y-3/2*N_Y,+1/2+1*L_Y+1/2*N_Y,-1+1*J_Y-1*N_Y,-1/2+1*K_Y-1/2*N_Y,-1/2+1*E_Y+1/2*N_Y,-1/2+1*I_Y-1/2*N_Y,-1/2+1*C_Y-1/2*N_Y,-1+1*J_X,-1+1*K_X,+1/2+1*I_X+3/2*N_Y,+1/2+1*H_X+3/2*N_Y],);
print("A_x=0 A_y=0 B_x=0 B_y=1 D=(1,D_y,0) E_x=0 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
print(AELMBEFGBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL);
solve([+2+1*M_Y,-1/2+1*B_Y,+1+1*K_Y,+1/2+1*I_X,-1/2+1*N_X,-3/2+1*H_X,-1+1*D_X,-1/2+1*J_X,-1/2+1*K_X,+1+1*H_Y,+1+1*D_Y,-1+1*J_Y,-1+1*I_Y],);
print("A=(1,A_y,0) B_x=0 C_x=1 C_y=0 E=(0,1,0) F_x=0 F_y=0 G_x=0 G_y=1 L=(1,0,0) M=(1,M_y,0) N_y=0 ");
print(ADEFBCMNBGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
solve([+1-3*M_Y+3*M_Y*M_Y,+1*A_X-1*A_Y-2*A_X*M_Y+3*M_Y*M_Y,-2+1*L_X+3*M_Y,-1+1*D_Y+2*M_Y,-1+1*J_Y+1*M_Y,+1+1*E_Y-2*M_Y,-2+1*G_X+3*M_Y,+1*K_Y+1*M_Y,-2+1*E_X+3*M_Y,+1*F_Y-1*M_Y,+1*L_Y-1*M_Y,-1+1*F_X,-1+1*J_X],);
print("B_x=0 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) G_y=0 H=(1,0,0) I_x=1 I_y=0 K=(1,K_y,0) M_x=0 N=(0,1,0) ");
print(ABFLACMNBGHICJKLDGJMDHLNEGKNEILMFHKMFIJN);
solve([+1-1*K_Y+1*K_Y*K_Y,+1+1*J_Y-1*K_Y,-1/2+1*B_X,+1+1*C_Y-1*K_Y,+1+1*E_Y-1*K_Y,+1+1*G_Y-2*K_Y,+1+1*I_Y,+1*D_Y-1*K_Y,-1+1*K_X+1*K_Y,-1+1*E_X+1*K_Y,+1+1*M_Y,-1+1*G_X+1*K_Y,-1+1*J_X,-1+1*I_X],);
print("A=(1,0,0) B_y=0 C=(1,C_y,0) D_x=0 F_x=1 F_y=0 H_x=0 H_y=1 L_x=0 L_y=0 M=(1,M_y,0) N=(0,1,0) ");
print(ABKLAGHMBIJNCDMNCGIKDHJLEHKNEILMFGLNFJKM);
solve([+1+1*N_X+1*N_X*N_X,+1*D_X+1*D_X*N_X-1*N_X*N_X,-2+1*D_Y-1*N_X,-1+1*C_X-1*N_X,-1+1*M_Y-1*N_X,+2/3+1*B_Y+1/3*N_X,+1+1*F_X,+1+1*J_X+1*N_X,-1+1*E_X-1*N_X,-1+1*N_Y,+1+1*L_Y+1*N_X,-1+1*E_Y,-1+1*J_Y-1*N_X,-1+1*F_Y-1*N_X],);
print("A=(0,1,0) B=(1,B_y,0) C_y=0 G_x=0 G_y=0 H_x=0 H_y=1 I_x=1 I_y=0 K=(1,0,0) L=(1,L_y,0) M_x=0 ");
print(ABEFAGHIBGMNCDJMCEKNDHLNEILMFHKMFIJNGJKL);
solve([-1/4+1*J_Y,-1/2+1*N_Y,-3/4+1*C_Y,-1/2+1*C_X,-3/4+1*D_X,-3/2+1*G_X,-1/2+1*L_X,+1/2+1*K_Y,-3/2+1*B_Y,-1/2+1*D_Y,-1+1*J_X,-1+1*N_X,+1+1*M_Y,-1/2+1*L_Y],);
print("A_x=0 A_y=0 B_x=0 E_x=0 E_y=1 F=(0,1,0) G_y=0 H=(1,0,0) I_x=1 I_y=0 K=(1,K_y,0) M=(1,M_y,0) ");
print(ABGKACLMBHINCJKNDELNDHJMEIKMFGMNFHKLGIJL);
solve([-3/2+1*D_X,+2/3+1*E_Y,-2+1*L_X,-2/3+1*N_Y,-1/3+1*J_Y,+1/3+1*I_Y,-1/3+1*D_Y,-1/3+1*H_Y,-2/3+1*F_Y,-2/3+1*G_Y,-2+1*H_X,-2+1*F_X,-1+1*J_X,-1+1*N_X],);
print("A_x=0 A_y=0 B_x=0 B_y=1 C_x=1 C_y=0 E=(1,E_y,0) G_x=0 I=(1,I_y,0) K=(0,1,0) L_y=0 M=(1,0,0) ");
print(AEFGBELMBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL);
solve([-1/2+1*B_Y,-1/2+1*D_Y,-1+1*D_X,+2+1*I_X,+1/2+1*G_Y,-1/3+1*H_Y,-2+1*N_X,+1+1*J_Y,-2+1*K_X,-1+1*I_Y,-1+1*K_Y,-2+1*J_X,-2/3+1*H_X],);
print("A=(1,A_y,0) B_x=0 C_x=1 C_y=0 E=(0,1,0) F=(1,0,0) G=(1,G_y,0) L_x=0 L_y=0 M_x=0 M_y=1 N_y=0 ");
print(ABFLAGHIBGMNCDLMCFJNDHKNEHJMEILNFIKMGJKL);
solve([+3/4+1*N_Y,-3/2+1*C_Y,-1+1*D_Y,+1/2+1*E_Y,-1/3+1*K_X,+2/3+1*C_X,+1/3+1*D_X,-4/3+1*E_X,-2/3+1*J_X,+3/2+1*M_Y,-1/2+1*L_Y,-2/3+1*I_X,-1/2+1*K_Y,-1/2+1*J_Y],);
print("A_x=0 A_y=0 B=(0,1,0) F_x=0 F_y=1 G=(1,0,0) H_x=1 H_y=0 I_y=0 L_x=0 M=(1,M_y,0) N=(1,N_y,0) ");
print(ABCMADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN);
solve([+1+1*M_X*M_X,+1*K_Y-1*M_X+1*K_Y*M_X,+1*K_X-1*K_Y,-1+1*L_Y-1*M_X,-1+1*N_Y,+1+1*H_X-1*M_X,-1+1*G_X-1*M_X,+1*E_Y+1*M_X,+1*H_Y-1*M_X,+1*F_Y-1*M_X,+1*L_X-1*M_X,+1*G_Y-1*M_X,+1*F_X-1*M_X,+1+1*I_Y],);
print("A=(1,0,0) B_x=0 B_y=0 C_x=1 C_y=0 D=(0,1,0) E=(1,E_y,0) I_x=0 J_x=0 J_y=1 M_y=0 N=(1,N_y,0) ");



==========
wayne实数解:
{{14,10},"ACDEAFGHBIJKBLMNCFILCGJMDFJNDHKLEGKNEHIM",{{{"A",{1,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,-1,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}},{{"A",{1+Sqrt,1/2 (1-Sqrt),1}},{"B",{0,1/2 (-1+Sqrt),1}},{"C",{1/2 (3+Sqrt),1/2 (1-Sqrt),1}},{"D",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"E",{1,0,0}},{"F",{2+Sqrt,1/2 (-1-Sqrt),1}},{"G",{1/2 (3+Sqrt),0,1}},{"H",{1,-1,0}},{"I",{1,1/2 (1-Sqrt),0}},{"J",{1/2 (3+Sqrt),-1,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}},{{"A",{1-Sqrt,1/2 (1+Sqrt),1}},{"B",{0,1/2 (-1-Sqrt),1}},{"C",{1/2 (3-Sqrt),1/2 (1+Sqrt),1}},{"D",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"E",{1,0,0}},{"F",{2-Sqrt,1/2 (-1+Sqrt),1}},{"G",{1/2 (3-Sqrt),0,1}},{"H",{1,-1,0}},{"I",{1,1/2 (1+Sqrt),0}},{"J",{1/2 (3-Sqrt),-1,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}}}}
{{14,10},"AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEGKLFHIJ",{{{"A",{0,1,1}},{"B",{1,0,0}},{"C",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,-1,1}},{"D",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,Dy,1}},{"E",{0,0,1}},{"F",{0,(2 Dy)/(1+Dy) if -1<Dy<1||Dy>1||Dy<-1,1}},{"G",{1,-1,0}},{"H",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,(1+Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,1}},{"I",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,0,1}},{"J",{1,-1+2/(1+Dy) if -1<Dy<1||Dy>1||Dy<-1,0}},{"K",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,-((2 Dy)/(-1+Dy)) if -1<Dy<1||Dy>1||Dy<-1,1}},{"L",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,1/2 (-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,1}},{"M",{0,1,0}},{"N",{1,0,1}}}}}
{{14,10},"AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEHJKFGIL",{{{"A",{0,0,1}},{"B",{1,-(1/Gx) if -1<Gx<0||Gx>0||Gx<-1,0}},{"C",{1+1/Gx if -1<Gx<0||Gx>0||Gx<-1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"D",{1/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"E",{0,1,0}},{"F",{0,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"G",{Gx,0,1}},{"H",{1,0,1}},{"I",{1,-(1/(1+Gx)) if -1<Gx<0||Gx>0||Gx<-1,0}},{"J",{1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"K",{1,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"L",{1/Gx if -1<Gx<0||Gx>0||Gx<-1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"M",{0,1,1}},{"N",{1,0,0}}}}}
{{14,10},"AEFMAGHNBEINBGJMCHKMCJLNDFKNDILMEGKLFHIJ",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,0,1}},{"E",{1,0,0}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,0,1}}}}}
{{14,10},"AEFGAHMNBEIMBFJNCEKNCGLMDILNDJKMFHKLGHIJ",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1,1/2 (-3-Sqrt),1}},{"D",{1/2 (1-Sqrt),1+Sqrt,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2 (-1-Sqrt),0,1}},{"H",{1,1/2 (1+Sqrt),0}},{"I",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"J",{0,1/2 (3+Sqrt),1}},{"K",{1,1/2 (1+Sqrt),1}},{"L",{1/2 (1-Sqrt),-1,1}},{"M",{1,-1,0}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1,1/2 (-3+Sqrt),1}},{"D",{1/2 (1+Sqrt),1-Sqrt,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2 (-1+Sqrt),0,1}},{"H",{1,1/2 (1-Sqrt),0}},{"I",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"J",{0,1/2 (3-Sqrt),1}},{"K",{1,1/2 (1-Sqrt),1}},{"L",{1/2 (1+Sqrt),-1,1}},{"M",{1,-1,0}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCELNCHJMDKLMEHIKFGJLFIMN",{{{"A",{0,0,1}},{"B",{Root[-1+4 #1-5 #1^2+#1^3&,1,0],Root,1}},{"C",{Root,Root,1}},{"D",{0,1,1}},{"E",{0,Root,1}},{"F",{0,1,0}},{"G",{1,0,1}},{"H",{Root,0,1}},{"I",{1,-1,0}},{"J",{1,Root,1}},{"K",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root,1}},{"L",{1,Root,1}},{"M",{1,Root,0}},{"N",{1,0,0}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCGKMDFMNDHILEHJMEIKNGJLN",{{{"A",{Root[-1+2 #1-#1^2+#1^3&,1,0],Root,1}},{"B",{Root,1+Root,1}},{"C",{Root[-1-#1+#1^3&,1,0],Root,1}},{"D",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root,1}},{"E",{1,0,0}},{"F",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"G",{0,Root,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,0,1}},{"K",{1,Root[-1-#1+#1^3&,1,0],0}},{"L",{0,1,1}},{"M",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],0,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCGKMDFMNDHILEGINEJLMHJKN",{{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1,0,1}},{"D",{1,0,0}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,0}},{"M",{1,0,1}},{"N",{1,0,1}}},{{"A",{0,Root[-1+2 #1-3 #1^2+#1^3&,1,0],1}},{"B",{1,0,1}},{"C",{Root[-1+6 #1-11 #1^2+5 #1^3&,1,0],Root,1}},{"D",{1,Root,0}},{"E",{Root,Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{1,Root,0}},{"J",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"K",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],0,1}},{"L",{1,0,0}},{"M",{Root,Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"N",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],Root,1}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCFMNDGIKDHJMEHKNEILMGJLN",{{{"A",{1,0,1}},{"B",{-1+1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt Sign)/(Ny-Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,Ny/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,1}},{"F",{1,0,0}},{"G",{1/2 (-(2/Ny)+1/(1+Ny)-Sqrt) if -1<Ny<0||Ny>0||Ny<-1,0,1}},{"H",{0,0,1}},{"I",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2 (1+Ny))/(Ny-Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"J",{0,-((2+Ny (3+2 Ny)+Sqrt Sign)/((1+Ny) (Ny-Sqrt Sign))) if -1<Ny<0||Ny>0||Ny<-1,1}},{"K",{-((2+Ny+Sqrt Sign)/(Ny (Ny-Sqrt Sign))) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt Sign)/(Ny-Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"L",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt Sign)/(Ny-Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"M",{0,1,0}},{"N",{1,Ny,0}}},{{"A",{1,0,1}},{"B",{-1+1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt Sign)/(Ny+Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,Ny/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,1}},{"F",{1,0,0}},{"G",{1/2 (-(2/Ny)+1/(1+Ny)+Sqrt) if -1<Ny<0||Ny>0||Ny<-1,0,1}},{"H",{0,0,1}},{"I",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2 (1+Ny))/(Ny+Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"J",{0,(-2-Ny (3+2 Ny)+Sqrt Sign)/((1+Ny) (Ny+Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"K",{-((2+Ny-Sqrt Sign)/(Ny (Ny+Sqrt Sign))) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt Sign)/(Ny+Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"L",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt Sign)/(Ny+Sqrt Sign)) if -1<Ny<0||Ny>0||Ny<-1,1}},{"M",{0,1,0}},{"N",{1,Ny,0}}},{{"A",{1,0,1}},{"B",{0,0,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2,0,1}},{"H",{0,0,1}},{"I",{1,-1,1}},{"J",{0,0,1}},{"K",{1/2,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBKLNCEGKCFINDGLMEJMNFHJLHIKM",{{{"A",{1,0,0}},{"B",{-3,4,1}},{"C",{0,3/2,1}},{"D",{1,0,1}},{"E",{3,0,1}},{"F",{0,0,1}},{"G",{1,-(1/2),0}},{"H",{1,-(2/3),0}},{"I",{0,1,1}},{"J",{3,-2,1}},{"K",{-3,3,1}},{"L",{-3,2,1}},{"M",{3,-1,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDIJBKLNCEGKCFINDHKMEJMNFHJLGILM",{{{"A",{1,0,0}},{"B",{4,-3,1}},{"C",{0,3/2,1}},{"D",{1,0,1}},{"E",{2,0,1}},{"F",{0,0,1}},{"G",{1,-(3/4),0}},{"H",{1,-(1/2),0}},{"I",{0,1,1}},{"J",{2,-1,1}},{"K",{4,-(3/2),1}},{"L",{4,-2,1}},{"M",{2,-(1/2),1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCEJNCHLMDIMNEGKMFHKNFIJL",{{{"A",{0,1,0}},{"B",{1/8,1/2,1}},{"C",{2,-1,1}},{"D",{1,0,0}},{"E",{1,-(2/3),0}},{"F",{1,-2,0}},{"G",{0,2/3,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{-(1/4),1/2,1}},{"K",{1/4,1/2,1}},{"L",{-1,2,1}},{"M",{1,0,1}},{"N",{1/2,0,1}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCFINCGKLDLMNEHJLFGJMHIKM",{{{"A",{1,0,0}},{"B",{0,-1,1}},{"C",{1,-1,1}},{"D",{1/4,0,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,-2,0}},{"H",{1,2,0}},{"I",{1,3,1}},{"J",{1/2,1,1}},{"K",{0,1,1}},{"L",{1/4,1/2,1}},{"M",{1/4,3/2,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCEJNCHLMDIMNEIKLFGJMFHKN",{{{"A",{0,1,0}},{"B",{3/4,1/2,1}},{"C",{4/3,1/3,1}},{"D",{1,0,0}},{"E",{1,1,0}},{"F",{1,-1,0}},{"G",{0,2,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{3/2,1/2,1}},{"K",{1/2,1/2,1}},{"L",{2/3,2/3,1}},{"M",{2,0,1}},{"N",{1,0,1}}}}}
{{14,10},"ABDEAFGNBHINCDJNCFKLDHKMEGIKELMNFIJMGHJL",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,1}},{"F",{1,-1,0}},{"G",{1,-1,0}},{"H",{0,1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{0,1,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGMNEGILEHJMFJLNHIKN",{{{"A",{4/3,-1,1}},{"B",{-1,0,1}},{"C",{1,0,1}},{"D",{1/3,2,1}},{"E",{2/3,1,1}},{"F",{1,-(3/2),0}},{"G",{1/3,1/2,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{1,0,0}},{"K",{0,3/2,1}},{"L",{1,3/2,0}},{"M",{1/3,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGMNEFINEGJLHILMHJKN",{{{"A",{Ax,1,1}},{"B",{1,-1,0}},{"C",{1,0,0}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,0,1}},{"G",{Gx,1,1}},{"H",{0,0,1}},{"I",{0,1,0}},{"J",{1,0,0}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,0,1}},{"N",{0,0,1}}},{{"A",{0 if Cy!=0,1 if Cy!=0,1}},{"B",{1,-1 if Cy!=0,0}},{"C",{1,Cy,0}},{"D",{0 if Cy!=0,1 if Cy!=0,1}},{"E",{0,1,1}},{"F",{0,-Cy if Cy!=0,1}},{"G",{0 if Cy!=0,1,1}},{"H",{0 if Cy!=0,0,1}},{"I",{0,1,0}},{"J",{1,0,0}},{"K",{1,0,1}},{"L",{0 if Cy!=0,1,1}},{"M",{0 if Cy!=0,-Cy if Cy!=0,1}},{"N",{0,0,1}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCDMNCHJLEHKNEILMFGKMFIJN",{{{"A",{0,0,1}},{"B",{1,3/5,1}},{"C",{-(1/8),9/10,1}},{"D",{0,1,1}},{"E",{0,2/5,1}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{-(1/2),0,1}},{"J",{-(1/2),6/5,1}},{"K",{1,-(2/5),0}},{"L",{1/4,3/5,1}},{"M",{1,4/5,0}},{"N",{-(1/2),3/5,1}}}}}
{{14,10},"ABDEAFGNBHINCFHJCKLNDFKMDIJLEGIKEJMNGHLM",{{{"A",{0,1,1}},{"B",{0,0,1}},{"C",{1/2 (5+Sqrt),1/2 (1-Sqrt),1}},{"D",{0,1/2 (3-Sqrt),1}},{"E",{0,1,0}},{"F",{1/2 (1-Sqrt),1,1}},{"G",{1,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-3+Sqrt),0}},{"K",{1,1/2 (1-Sqrt),1}},{"L",{1/2 (3+Sqrt),1/2 (1-Sqrt),1}},{"M",{1,-1,0}},{"N",{1,0,0}}},{{"A",{0,1,1}},{"B",{0,0,1}},{"C",{1/2 (5-Sqrt),1/2 (1+Sqrt),1}},{"D",{0,1/2 (3+Sqrt),1}},{"E",{0,1,0}},{"F",{1/2 (1+Sqrt),1,1}},{"G",{1,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-3-Sqrt),0}},{"K",{1,1/2 (1+Sqrt),1}},{"L",{1/2 (3-Sqrt),1/2 (1+Sqrt),1}},{"M",{1,-1,0}},{"N",{1,0,0}}}}}
{{14,10},"AEFGAHIMBEMNBHJKCFJNCGLMDFKMDHLNEIJLGIKN",{{{"A",{0,0,1}},{"B",{1,1/2 (1+Sqrt),0}},{"C",{1/2 (-1-Sqrt),1,1}},{"D",{1/2 (3+Sqrt),1/2 (1-Sqrt),1}},{"E",{0,1,0}},{"F",{0,1/2 (1-Sqrt),1}},{"G",{0,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-1-Sqrt),1}},{"K",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"L",{1,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{1,1/2 (1-Sqrt),0}},{"C",{1/2 (-1+Sqrt),1,1}},{"D",{1/2 (3-Sqrt),1/2 (1+Sqrt),1}},{"E",{0,1,0}},{"F",{0,1/2 (1+Sqrt),1}},{"G",{0,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-1+Sqrt),1}},{"K",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"L",{1,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"AEFGAHIMBEMNBHJKCFJNCGKMDFLMDIKNEIJLGHLN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{-(1/Sqrt),3+2 Sqrt,1}},{"D",{1,6+4 Sqrt,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{-(1/Sqrt),0,1}},{"H",{1,2 (1+Sqrt),0}},{"I",{1,4+3 Sqrt,0}},{"J",{1-1/Sqrt,1+Sqrt,1}},{"K",{-(1/Sqrt),-1-Sqrt,1}},{"L",{1,4+3 Sqrt,1}},{"M",{0,1,0}},{"N",{0,2+Sqrt,1}}},{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/Sqrt,3-2 Sqrt,1}},{"D",{1,6-4 Sqrt,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1/Sqrt,0,1}},{"H",{1,2-2 Sqrt,0}},{"I",{1,4-3 Sqrt,0}},{"J",{1+1/Sqrt,1-Sqrt,1}},{"K",{1/Sqrt,-1+Sqrt,1}},{"L",{1,4-3 Sqrt,1}},{"M",{0,1,0}},{"N",{0,2-Sqrt,1}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGINEFLNEGJMHILMHJKN",{{{"A",{-1,1,1}},{"B",{1/2 (3-Sqrt),1/2 (3-Sqrt),1}},{"C",{0,1,1}},{"D",{1/2 (1-Sqrt),1,1}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,-1,0}},{"H",{1,-1,1}},{"I",{1,1/2 (1-Sqrt),1}},{"J",{1,1/2 (-1-Sqrt),0}},{"K",{0,1/2 (-1+Sqrt),1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1/2 (3-Sqrt),0,1}}},{{"A",{-1,1,1}},{"B",{1/2 (3+Sqrt),1/2 (3+Sqrt),1}},{"C",{0,1,1}},{"D",{1/2 (1+Sqrt),1,1}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,-1,0}},{"H",{1,-1,1}},{"I",{1,1/2 (1+Sqrt),1}},{"J",{1,1/2 (-1+Sqrt),0}},{"K",{0,1/2 (-1-Sqrt),1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1/2 (3+Sqrt),0,1}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGINEFLNEHIMGJLMHJKN",{{{"A",{0,0,1}},{"B",{Bx,1-Bx if Bx!=Root,1}},{"C",{0,1,1}},{"D",{0,1 if Bx!=Root,1}},{"E",{0,1,0}},{"F",{1 if Bx!=Root,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,-1 if Bx!=Root,0}},{"J",{1 if Bx!=Root,0 if Bx!=Root,1}},{"K",{1 if Bx!=Root,0 if Bx!=Root,1}},{"L",{1 if Bx!=Root,0 if Bx!=Root,1}},{"M",{1,-1 if Bx!=Root,0}},{"N",{1 if Bx!=Root,0 if Bx!=Root,1}}},{{"A",{0,0,1}},{"B",{Root,Root[-7+11 #1-6 #1^2+#1^3&,1,0],1}},{"C",{0,1,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,-1,0}},{"N",{1,0,1}}},{{"A",{0,0,1}},{"B",{Root,Root,1}},{"C",{0,1,1}},{"D",{0,Root,1}},{"E",{0,1,0}},{"F",{Root,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,Root[-1-#1+#1^3&,1,0],0}},{"J",{Root,Root,1}},{"K",{Root,Root,1}},{"L",{Root,Root,1}},{"M",{1,Root[-1+#1^2+#1^3&,1,0],0}},{"N",{Root,Root,1}}}}}
{{14,10},"ABDEAFGNBHINCFJKCHLMDGHJDKLNEFILEJMNGIKM",{{{"A",{0,1/2 (-1-Sqrt),1}},{"B",{0,0,1}},{"C",{1/2 (5-Sqrt),1/2 (1-Sqrt),1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"G",{1,1/2 (-1-Sqrt),1}},{"H",{1,0,1}},{"I",{1/2 (-1+Sqrt),0,1}},{"J",{1,1,1}},{"K",{1,-2-Sqrt,0}},{"L",{1,1/2 (-1-Sqrt),0}},{"M",{1/2 (3-Sqrt),1,1}},{"N",{1,0,0}}},{{"A",{0,1/2 (-1+Sqrt),1}},{"B",{0,0,1}},{"C",{1/2 (5+Sqrt),1/2 (1+Sqrt),1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"G",{1,1/2 (-1+Sqrt),1}},{"H",{1,0,1}},{"I",{1/2 (-1-Sqrt),0,1}},{"J",{1,1,1}},{"K",{1,-2+Sqrt,0}},{"L",{1,1/2 (-1+Sqrt),0}},{"M",{1/2 (3+Sqrt),1,1}},{"N",{1,0,0}}}}}
{{14,10},"ADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN",{{{"A",{0,0,1}},{"B",{1,0,0}},{"C",{1,0,1}},{"D",{0,0,1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,-1,0}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCEHJCFLNDJLMEIMNFGKMHIKL",{{{"A",{2,0,1}},{"B",{1/3,1,1}},{"C",{-2,6,1}},{"D",{1,0,0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,1}},{"H",{-1,3,1}},{"I",{0,1,1}},{"J",{1,-3,0}},{"K",{1,-1,1}},{"L",{1,-2,0}},{"M",{0,1,0}},{"N",{0,2,1}}},{{"A",{0,0,1}},{"B",{1,1,1}},{"C",{0,0,1}},{"D",{1,0,0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,1}},{"H",{1,1,1}},{"I",{0,1,1}},{"J",{1,1,0}},{"K",{1,1,1}},{"L",{1,0,0}},{"M",{0,1,0}},{"N",{0,0,1}}}}}
{{14,10},"ABDEAFGNBHINCDFJCKLNDHKMEGHLEJMNFILMGIJK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{4/3,-(2/5),1}},{"D",{1,0,1}},{"E",{2/3,0,1}},{"F",{1,-(6/5),0}},{"G",{1,-(9/10),0}},{"H",{0,3/5,1}},{"I",{0,1,1}},{"J",{2/3,2/5,1}},{"K",{4/3,-(1/5),1}},{"L",{4/3,-(3/5),1}},{"M",{2/3,1/5,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGNBHINCDFJCKLNDHKMEGIKEJMNFILMGHJL",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{4,-6,1}},{"D",{1,0,1}},{"E",{2,0,1}},{"F",{1,-2,0}},{"G",{1,-(3/2),0}},{"H",{0,1,1}},{"I",{0,3,1}},{"J",{2,-2,1}},{"K",{4,-3,1}},{"L",{4,-5,1}},{"M",{2,-1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGHBIJNCFKNCILMDFJLDGMNEGIKEHLNHJKM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{Cx,1-Cx,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,-1,0}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{2,1/4 (1+Sqrt),1}},{"D",{0,1/4 (1-Sqrt),1}},{"E",{0,1,0}},{"F",{1/2 (1-Sqrt),0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1/4 (3+Sqrt),1}},{"J",{1/2 (-1-Sqrt),1/2,1}},{"K",{1,1/2,1}},{"L",{1,-(1/2),0}},{"M",{1/2 (3+Sqrt),1/2,1}},{"N",{1,1/4 (-1+Sqrt),0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{2,1/4 (1-Sqrt),1}},{"D",{0,1/4 (1+Sqrt),1}},{"E",{0,1,0}},{"F",{1/2 (1+Sqrt),0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1/4 (3-Sqrt),1}},{"J",{1/2 (-1+Sqrt),1/2,1}},{"K",{1,1/2,1}},{"L",{1,-(1/2),0}},{"M",{1/2 (3-Sqrt),1/2,1}},{"N",{1,1/4 (-1-Sqrt),0}}}}}
{{14,10},"ABEMAFGNBHINCEFJCKMNDGHMDJLNEHKLFILMGIJK",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,-4,0}},{"D",{3/2,2,1}},{"E",{0,4,1}},{"F",{1,0,1}},{"G",{3/2,0,1}},{"H",{3/2,1,1}},{"I",{1,1,1}},{"J",{1/2,2,1}},{"K",{1,-2,0}},{"L",{1,2,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ABEMAFGNBHINCFJKCHLMDFILDJMNEGHJEKLNGIKM",{{{"A",{0,1,0}},{"B",{1,-1-Sqrt,0}},{"C",{-2-Sqrt,3+Sqrt,1}},{"D",{1/2 (-1+Sqrt),0,1}},{"E",{1,-2,0}},{"F",{0,1,1}},{"G",{0,2,1}},{"H",{1/2 (-1-Sqrt),3+Sqrt,1}},{"I",{1/2 (1-Sqrt),2,1}},{"J",{1,0,1}},{"K",{-1,2,1}},{"L",{1/2 (-3-Sqrt),3+Sqrt,1}},{"M",{1,0,0}},{"N",{0,0,1}}},{{"A",{0,1,0}},{"B",{1,-1+Sqrt,0}},{"C",{-2+Sqrt,3-Sqrt,1}},{"D",{1/2 (-1-Sqrt),0,1}},{"E",{1,-2,0}},{"F",{0,1,1}},{"G",{0,2,1}},{"H",{1/2 (-1+Sqrt),3-Sqrt,1}},{"I",{1/2 (1+Sqrt),2,1}},{"J",{1,0,1}},{"K",{-1,2,1}},{"L",{1/2 (-3+Sqrt),3-Sqrt,1}},{"M",{1,0,0}},{"N",{0,0,1}}}}}
{{14,10},"ABLMAFGNBHINCFJLCHKMDGHLDJMNEFIMEKLNGIJK",{{{"A",{1,0,0}},{"B",{1/2 (1-Sqrt),0,1}},{"C",{1/2 (3-Sqrt),-1,1}},{"D",{0,1,1}},{"E",{1,1/2 (1+Sqrt),1}},{"F",{1,1/2 (1+Sqrt),0}},{"G",{1,-1,0}},{"H",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"I",{1/2 (1-Sqrt),-1,1}},{"J",{0,1/2 (-1-Sqrt),1}},{"K",{1,1/2 (-3-Sqrt),1}},{"L",{1,0,1}},{"M",{0,0,1}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{1/2 (1+Sqrt),0,1}},{"C",{1/2 (3+Sqrt),-1,1}},{"D",{0,1,1}},{"E",{1,1/2 (1-Sqrt),1}},{"F",{1,1/2 (1-Sqrt),0}},{"G",{1,-1,0}},{"H",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"I",{1/2 (1+Sqrt),-1,1}},{"J",{0,1/2 (-1+Sqrt),1}},{"K",{1,1/2 (-3+Sqrt),1}},{"L",{1,0,1}},{"M",{0,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCDLNCEJMEHIKFHJLFIMNGKLM",{{{"A",{0,0,1}},{"B",{Root[-1-3 #1-2 #1^2+#1^3&,1,0],Root,1}},{"C",{Root,1,1}},{"D",{0,1,1}},{"E",{0,Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"F",{0,1,0}},{"G",{Root[-1+#1-2 #1^2+#1^3&,1,0],0,1}},{"H",{1,0,1}},{"I",{1,Root,0}},{"J",{1,Root,1}},{"K",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root,1}},{"L",{1,1,1}},{"M",{1,Root,0}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCDGLCIMNEHJMFGKMFJLNHIKL",{{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,2,0],0}},{"C",{Root,Root,1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,1,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root,0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,1,0],Root,1}},{"J",{Root,1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,1,0],1,1}},{"M",{Root,Root,1}},{"N",{1,0,0}}},{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,3,0],0}},{"C",{Root,Root,1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,2,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root,0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,2,0],Root,1}},{"J",{Root,1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,2,0],1,1}},{"M",{Root,Root,1}},{"N",{1,0,0}}},{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,1,0],0}},{"C",{Root,Root,1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,3,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root,0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,3,0],Root,1}},{"J",{Root,1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,3,0],1,1}},{"M",{Root,Root,1}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCDGLCIMNEHLMFHIKFJLNGJKM",{{{"A",{1,Root,0}},{"B",{Root,Root,1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,3,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,1,0],Root,1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root,0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,1,0],1,1}},{"J",{Root,0,1}},{"K",{Root,Root,1}},{"L",{0,0,1}},{"M",{Root,1,1}},{"N",{1,0,0}}},{{"A",{1,Root,0}},{"B",{Root,Root,1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,2,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,2,0],Root,1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root,0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,2,0],1,1}},{"J",{Root,0,1}},{"K",{Root,Root,1}},{"L",{0,0,1}},{"M",{Root,1,1}},{"N",{1,0,0}}},{{"A",{1,Root,0}},{"B",{Root,Root,1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,1,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,3,0],Root,1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root,0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,3,0],1,1}},{"J",{Root,0,1}},{"K",{Root,Root,1}},{"L",{0,0,1}},{"M",{Root,1,1}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCFGKCILNDGLMEHJLFJMNHIKM",{{{"A",{1,0,0}},{"B",{1+1/Sqrt,-(1/Sqrt),1}},{"C",{0,-Sqrt,1}},{"D",{-(1/Sqrt),0,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,0}},{"H",{1,-1+Sqrt,0}},{"I",{-1-1/Sqrt,1-1/Sqrt,1}},{"J",{1-1/Sqrt,-1+1/Sqrt,1}},{"K",{0,1,1}},{"L",{-(1/Sqrt),-(1/Sqrt),1}},{"M",{-(1/Sqrt),1/Sqrt,1}},{"N",{1,-1,0}}},{{"A",{1,0,0}},{"B",{1-1/Sqrt,1/Sqrt,1}},{"C",{0,Sqrt,1}},{"D",{1/Sqrt,0,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,0}},{"H",{1,-1-Sqrt,0}},{"I",{-1+1/Sqrt,1+1/Sqrt,1}},{"J",{1+1/Sqrt,-1-1/Sqrt,1}},{"K",{0,1,1}},{"L",{1/Sqrt,1/Sqrt,1}},{"M",{1/Sqrt,-(1/Sqrt),1}},{"N",{1,-1,0}}}}}
{{14,10},"ABEFAGHMBIMNCEJNCFKMDGKNDJLMEGILFHLNHIJK",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,1/3,0}},{"D",{5/2,1/2,1}},{"E",{0,2/3,1}},{"F",{0,1,0}},{"G",{4,0,1}},{"H",{1,0,1}},{"I",{-2,1,1}},{"J",{-(1/2),1/2,1}},{"K",{1,-(1/3),0}},{"L",{1,1/2,1}},{"M",{1,0,0}},{"N",{1,1,1}}}}}
{{14,10},"ABEMAFGNBHINCFHJCKLNDEGKDJMNEIJLFIKMGHLM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{-5,2,1}},{"D",{1,2/3,0}},{"E",{0,4/3,1}},{"F",{1,0,1}},{"G",{-2,0,1}},{"H",{-2,1,1}},{"I",{1,1,1}},{"J",{1,-(1/3),0}},{"K",{1,2,1}},{"L",{-2,2,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ACDEAFGHBCFIBDJKCGLMDHLNEGJNEIKLFKMNHIJM",{{{"A",{0,-1,1}},{"B",{1-1/Sqrt,1/Sqrt,1}},{"C",{1,0,1}},{"D",{1,1,0}},{"E",{2+Sqrt,1+Sqrt,1}},{"F",{0,1,1}},{"G",{0,0,1}},{"H",{0,1,0}},{"I",{-Sqrt,1+Sqrt,1}},{"J",{-Sqrt,-1,1}},{"K",{2,1+Sqrt,1}},{"L",{1,0,0}},{"M",{-Sqrt,0,1}},{"N",{1,1/Sqrt,0}}},{{"A",{0,-1,1}},{"B",{1+1/Sqrt,-(1/Sqrt),1}},{"C",{1,0,1}},{"D",{1,1,0}},{"E",{2-Sqrt,1-Sqrt,1}},{"F",{0,1,1}},{"G",{0,0,1}},{"H",{0,1,0}},{"I",{Sqrt,1-Sqrt,1}},{"J",{Sqrt,-1,1}},{"K",{2,1-Sqrt,1}},{"L",{1,0,0}},{"M",{Sqrt,0,1}},{"N",{1,-(1/Sqrt),0}}}}}
{{14,10},"ACDEAFGHBCFIBDJKCGLMDHLNEHJMEIKLFKMNGIJN",{{{"A",{Root,Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"B",{1,0,1}},{"C",{Root,Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"D",{1,0,0}},{"E",{Root,Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"F",{0,Root[-2+6 #1-4 #1^2+#1^3&,1,0],1}},{"G",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],Root,1}},{"H",{1,Root,0}},{"I",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],Root,1}},{"J",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],0,1}},{"K",{0,0,1}},{"L",{1,Root,0}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGNBHINCDFJCHKLDKMNEGIKEJLNFILMGHJM",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,0,1}},{"D",{0,0,1}},{"E",{-1,0,1}},{"F",{1,-1,0}},{"G",{1,0,0}},{"H",{1,1,1}},{"I",{1,0,1}},{"J",{-1,1,1}},{"K",{0,0,1}},{"L",{-1,2,1}},{"M",{0,1,1}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{3/4,-3,1}},{"D",{0,0,1}},{"E",{1/2,0,1}},{"F",{1,-4,0}},{"G",{1,-6,0}},{"H",{1,-5,1}},{"I",{1,-3,1}},{"J",{1/2,-2,1}},{"K",{0,3,1}},{"L",{1/2,-1,1}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABFLAGHMBIMNCDLMCFJNDGKNEHLNEJKMFHIKGIJL",{{{"A",{0,0,1}},{"B",{0,3/2,1}},{"C",{3,-(1/2),1}},{"D",{3,-1,1}},{"E",{1,-(1/4),0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1,1}},{"J",{1,1/2,1}},{"K",{-1,1,1}},{"L",{0,1,0}},{"M",{3,0,1}},{"N",{1,-(1/2),0}}}}}
{{14,10},"ABEMAFGHBIJNCFMNCIKLDGIMDHKNEFJKEGLNHJLM",{{{"A",{0,0,1}},{"B",{0,1/2 (5-Sqrt),1}},{"C",{1,1/2 (-3+Sqrt),0}},{"D",{1,1/2 (1-Sqrt),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2 (3-Sqrt),0,1}},{"I",{1,1/2 (3-Sqrt),1}},{"J",{1/2 (3-Sqrt),1,1}},{"K",{1/2 (1-Sqrt),1,1}},{"L",{1/2 (3-Sqrt),1/2 (-1+Sqrt),1}},{"M",{0,1,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1/2 (5+Sqrt),1}},{"C",{1,1/2 (-3-Sqrt),0}},{"D",{1,1/2 (1+Sqrt),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2 (3+Sqrt),0,1}},{"I",{1,1/2 (3+Sqrt),1}},{"J",{1/2 (3+Sqrt),1,1}},{"K",{1/2 (1+Sqrt),1,1}},{"L",{1/2 (3+Sqrt),1/2 (-1-Sqrt),1}},{"M",{0,1,0}},{"N",{1,-1,0}}}}}
{{14,10},"ADEFAGHIBDGJBHKNCDLNCIKMEGMNEJKLFHLMFIJN",{{{"A",{0,1,0}},{"B",{1/4,1/2,1}},{"C",{3/5,1/5,1}},{"D",{1,2,0}},{"E",{1,0,0}},{"F",{1,-1,0}},{"G",{0,0,1}},{"H",{0,1,1}},{"I",{0,1/2,1}},{"J",{1/6,1/3,1}},{"K",{1/3,1/3,1}},{"L",{2/3,1/3,1}},{"M",{1,0,1}},{"N",{1/2,0,1}}}}}
{{14,10},"ABFLACGMBHMNCILNDGJNDIKMEFKNEJLMFHIJGHKL",{{{"A",{0,0,1}},{"B",{0,2/3,1}},{"C",{-1,0,1}},{"D",{-3,4/3,1}},{"E",{1,1/3,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,2/3,1}},{"I",{-1,4/3,1}},{"J",{1,-(1/3),0}},{"K",{1,4/3,1}},{"L",{0,1,0}},{"M",{1,0,0}},{"N",{-1,2/3,1}}}}}
{{14,10},"ABDEAFGHBIJNCFIKCGLNDFMNDJKLEGJMEHKNHILM",{{{"A",{1/2,0,1}},{"B",{1,0,0}},{"C",{1/2 (3-Sqrt),2 (-2+Sqrt),1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (3-Sqrt),-2+Sqrt,1}},{"H",{1,-1,1}},{"I",{1,1/2 (-5+Sqrt),0}},{"J",{1,1/2 (-3+Sqrt),0}},{"K",{1,1/2 (-3+Sqrt),1}},{"L",{1/2 (3-Sqrt),1/2 (-7+3 Sqrt),1}},{"M",{0,1/2 (3-Sqrt),1}},{"N",{0,1,0}}},{{"A",{1/2,0,1}},{"B",{1,0,0}},{"C",{1/2 (3+Sqrt),-2 (2+Sqrt),1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (3+Sqrt),-2-Sqrt,1}},{"H",{1,-1,1}},{"I",{1,1/2 (-5-Sqrt),0}},{"J",{1,1/2 (-3-Sqrt),0}},{"K",{1,1/2 (-3-Sqrt),1}},{"L",{1/2 (3+Sqrt),1-3/2 (3+Sqrt),1}},{"M",{0,1/2 (3+Sqrt),1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCDMNCEHLEIJNFGJMFHKNIKLM",{{{"A",{0,0,1}},{"B",{1-By if -3<By<0||By>0||By<-3,By,1}},{"C",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"D",{0,1 if -3<By<0||By>0||By<-3,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1 if -3<By<0||By>0||By<-3,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"L",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"M",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"N",{1,-1 if -3<By<0||By>0||By<-3,0}}},{{"A",{0,0,1}},{"B",{-2,-3,1}},{"C",{-1,-6,1}},{"D",{0,-5,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{-1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{-3,-2,1}},{"L",{-1,-2,1}},{"M",{3,-2,1}},{"N",{1,1,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{4,-3,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1/2,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1/2,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{0,1,1}},{"L",{1/2,1,1}},{"M",{0,1,1}},{"N",{1,-2,0}}}}}
{{14,10},"AEFGAHIMBEHJBFMNCEKNCJLMDGKMDHLNFIKLGIJN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/3,1/6,1}},{"D",{1,-(3/2),1}},{"E",{1/2,0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,-2,0}},{"I",{1,-(1/2),0}},{"J",{1/3,1/3,1}},{"K",{1,-(1/2),1}},{"L",{1/3,-(1/6),1}},{"M",{0,1,0}},{"N",{0,1/2,1}}}}}
{{14,10},"ABDEAFGHBIJNCFIKCGLNDFMNDHJLEHKNEILMGJKM",{{{"A",{1/4 (3-Sqrt),0,1}},{"B",{1,0,0}},{"C",{1/2 (-1-Sqrt),3+Sqrt,1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (-1-Sqrt),5+2 Sqrt,1}},{"H",{1,-2-Sqrt,1}},{"I",{1,1/2 (-3-Sqrt),0}},{"J",{1,-2-Sqrt,0}},{"K",{1,1/2 (-1-Sqrt),1}},{"L",{1/2 (-1-Sqrt),1/2 (7+3 Sqrt),1}},{"M",{0,1/2 (3+Sqrt),1}},{"N",{0,1,0}}},{{"A",{1/4 (3+Sqrt),0,1}},{"B",{1,0,0}},{"C",{1/2 (-1+Sqrt),3-Sqrt,1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (-1+Sqrt),5-2 Sqrt,1}},{"H",{1,-2+Sqrt,1}},{"I",{1,1/2 (-3+Sqrt),0}},{"J",{1,-2+Sqrt,0}},{"K",{1,1/2 (-1+Sqrt),1}},{"L",{1/2 (-1+Sqrt),1/2 (7-3 Sqrt),1}},{"M",{0,1/2 (3-Sqrt),1}},{"N",{0,1,0}}}}}
{{14,10},"ABEFACGMBHMNCIJNDEKNDILMEHJLFGLNFJKMGHIK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{Lx if 5 Lx!=2,1-Lx if 5 Lx!=2,1}},{"E",{0,1 if 5 Lx!=2,1}},{"F",{0,1,1}},{"G",{1 if 5 Lx!=2,0,1}},{"H",{1,-1 if 5 Lx!=2,0}},{"I",{Lx if 5 Lx!=2,1-Lx if 5 Lx!=2,1}},{"J",{0 if 5 Lx!=2,1,1}},{"K",{0 if 5 Lx!=2,1,1}},{"L",{Lx,1-Lx if 5 Lx!=2,1}},{"M",{1,0,0}},{"N",{1,-1 if 5 Lx!=2,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{4/5,1/2,1}},{"E",{0,3/2,1}},{"F",{0,1,1}},{"G",{4/5,0,1}},{"H",{1,-(5/2),0}},{"I",{3/5,1/2,1}},{"J",{1/5,1,1}},{"K",{2/5,1,1}},{"L",{2/5,1/2,1}},{"M",{1,0,0}},{"N",{1,-(5/4),0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{2/5,3/5,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,-1,0}},{"I",{2/5,3/5,1}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{2/5,3/5,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ACDEBCFGBHINCJKNDFLNDHJMEGMNEHKLFIKMGIJL",{{{"A",{0,1,1}},{"B",{1+Ix-Mx if 2 Ix!=3,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,0 if 2 Ix!=3,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"I",{Ix,0 if 2 Ix!=3,1}},{"J",{Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"K",{-1+Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"L",{1,0 if 2 Ix!=3,0}},{"M",{Mx,0 if 2 Ix!=3,1}},{"N",{1,0 if 2 Ix!=3,0}}},{{"A",{0,1,1}},{"B",{2,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,-Ny,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2,-(1/2) (3 Ny),1}},{"I",{3/2,-(Ny/2),1}},{"J",{1/2,Ny/2,1}},{"K",{-(1/2),-(Ny/2),1}},{"L",{1,-Ny,0}},{"M",{1/2,-(Ny/2),1}},{"N",{1,Ny,0}}},{{"A",{0,1,1}},{"B",{5/2-Mx if 2 Mx!=1,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,0 if 2 Mx!=1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"I",{3/2 if 2 Mx!=1,0 if 2 Mx!=1,1}},{"J",{Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"K",{-1+Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"L",{1,0 if 2 Mx!=1,0}},{"M",{Mx,0 if 2 Mx!=1,1}},{"N",{1,0 if 2 Mx!=1,0}}}}}
{{14,10},"AEFGAHIMBEHJBFMNCEKNCJLMDGKMDIJNFIKLGHLN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/3,1/3,1}},{"D",{1/2,3/4,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2,0,1}},{"H",{1,-1,0}},{"I",{1,1/2,0}},{"J",{1/3,2/3,1}},{"K",{1/2,1/4,1}},{"L",{1/3,1/6,1}},{"M",{0,1,0}},{"N",{0,1/2,1}}}}}
{{14,10},"ABCDAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN",{{{"A",{1/(Ky-Ky^2) if 0<Ky<1||Ky>1||Ky<0,1+1/(-Ky+Ky^2) if 0<Ky<1||Ky>1||Ky<0,1}},{"B",{1/(1-Ky)-Ky if 0<Ky<1||Ky>1||Ky<0,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"C",{0,1,1}},{"D",{1,0,1}},{"E",{Ky/(-1+Ky) if 0<Ky<1||Ky>1||Ky<0,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"F",{1,-1+Ky if 0<Ky<1||Ky>1||Ky<0,0}},{"G",{0,Ky/(-1+Ky) if 0<Ky<1||Ky>1||Ky<0,1}},{"H",{1,0,0}},{"I",{1,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"J",{1/(1-Ky) if 0<Ky<1||Ky>1||Ky<0,0,1}},{"K",{1,Ky,1}},{"L",{0,0,1}},{"M",{0,1,0}},{"N",{1,Ky if 0<Ky<1||Ky>1||Ky<0,0}}}}}
{{14,10},"ABEFAGHMBIMNCDJMCEKNDGLNEHILFHJNFKLMGIJK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{3,-1,1}},{"D",{5/2,-1,1}},{"E",{0,2,1}},{"F",{0,1,1}},{"G",{3/2,0,1}},{"H",{1,0,1}},{"I",{1,-2,0}},{"J",{2,-1,1}},{"K",{1,1,1}},{"L",{1/2,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGNBHINCEFJCHKMDGIKDJMNEKLNFILMGHJL",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,-(2/3),1}},{"E",{0,0,1}},{"F",{0,1,0}},{"G",{1,-(8/3),0}},{"H",{-(1/2),2,1}},{"I",{1/2,2/3,1}},{"J",{0,2/3,1}},{"K",{3/2,-2,1}},{"L",{1/2,-(2/3),1}},{"M",{1/2,0,1}},{"N",{1,-(4/3),0}}}}}
{{14,10},"ABFLAGHMBIMNCFJNCGILDFKMDHLNEGKNEJLMHIJK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{Cx,1-Cx if 1+Cx!=0,1}},{"D",{0 if 1+Cx!=0,1 if 1+Cx!=0,1}},{"E",{0 if 1+Cx!=0,1,1}},{"F",{0,1 if 1+Cx!=0,1}},{"G",{1,0,1}},{"H",{1 if 1+Cx!=0,0,1}},{"I",{1,-1,0}},{"J",{0 if 1+Cx!=0,1,1}},{"K",{0 if 1+Cx!=0,1 if 1+Cx!=0,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1 if 1+Cx!=0,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-1,2,1}},{"D",{2/3,-1,1}},{"E",{2/3,1,1}},{"F",{0,-1,1}},{"G",{1,0,1}},{"H",{1/3,0,1}},{"I",{1,-1,0}},{"J",{-(2/3),1,1}},{"K",{4/3,-1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-3,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-1,2,1}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGHBIJNCFIKCGMNDFLNDJKMEGJLEHKNHILM",{{{"A",{0,0,1}},{"B",{0,1/2 (5-Sqrt),1}},{"C",{1,-3+Sqrt,0}},{"D",{1/4 (3-Sqrt),1/2 (1+Sqrt),1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{1,0,0}},{"H",{1/2,0,1}},{"I",{1/2,1/2 (3-Sqrt),1}},{"J",{1/4 (3-Sqrt),1,1}},{"K",{1/4 (3-Sqrt),1/2 (-1+Sqrt),1}},{"L",{1/2,1,1}},{"M",{0,1,0}},{"N",{1,-2,0}}},{{"A",{0,0,1}},{"B",{0,1/2 (5+Sqrt),1}},{"C",{1,-3-Sqrt,0}},{"D",{1/4 (3+Sqrt),1/2 (1-Sqrt),1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{1,0,0}},{"H",{1/2,0,1}},{"I",{1/2,1/2 (3+Sqrt),1}},{"J",{1/4 (3+Sqrt),1,1}},{"K",{1/4 (3+Sqrt),1/2 (-1-Sqrt),1}},{"L",{1/2,1,1}},{"M",{0,1,0}},{"N",{1,-2,0}}}}}
{{14,10},"ABDNAEFGBHIJCEKLCFHNDGIKDHLMEIMNFJKMGJLN",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{1,0,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,-1,0}},{"N",{0,1,0}}}}}
{{14,10},"ABEFACGMBHMNCIJNDEKNDHILEJLMFGLNFIKMGHJK",{{{"A",{0,0,1}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{2/3,3/4,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{4/3,0,1}},{"H",{1,1/2,1}},{"I",{1/3,1,1}},{"J",{1,-(3/2),0}},{"K",{2/3,1,1}},{"L",{1,-(3/4),0}},{"M",{1,0,0}},{"N",{2/3,1/2,1}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{0,1,1}},{"I",{0,1,1}},{"J",{1,-1,0}},{"K",{0,1,1}},{"L",{1,-1,0}},{"M",{1,0,0}},{"N",{0,1,1}}}}}
{{14,10},"ABDNAEFGBEHICFJKCHLNDGJLDHKMEJMNFILMGIKN",{{{"A",{0,0,1}},{"B",{0,0,1}},{"C",{1,0,0}},{"D",{0,1,1}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{0,1,1}},{"K",{1,1,1}},{"L",{1,-1,0}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABEFAGHMBIMNCDJNCGIKDELMEHKNFGLNFJKMHIJL",{{{"A",{1,0,0}},{"B",{1/2,0,1}},{"C",{3/4,-(5/4),1}},{"D",{0,1,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,0}},{"H",{1,-1,0}},{"I",{1/2,-(3/2),1}},{"J",{1,-2,1}},{"K",{1,-1,1}},{"L",{0,-1,1}},{"M",{0,1,0}},{"N",{1/2,-(1/2),1}}}}}
{{14,10},"ABMNAEFGBEHICFJMCGKNDHKMDIJNEJKLFHLNGILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1/2 (1-2 Ky-Sqrt),1/2 (1-Sqrt),1}},{"D",{1/2 (1+2 Ky+Sqrt),-Ky-Sqrt,1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2 (1-2 Ky-Sqrt),0,1}},{"H",{1,-1,0}},{"I",{1/2 (1+2 Ky+Sqrt),1/2 (1-2 Ky-Sqrt),1}},{"J",{1/2 (1+2 Ky+Sqrt),1/2 (1-Sqrt),1}},{"K",{1/2 (1-2 Ky-Sqrt),Ky,1}},{"L",{1,1/2 (-1-2 Ky+Sqrt),0}},{"M",{0,1/2 (1-Sqrt),1}},{"N",{0,1,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1/2 (1-2 Ky+Sqrt),1/2 (1+Sqrt),1}},{"D",{1/2+Ky-1/2 Sqrt,-Ky+Sqrt,1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2 (1-2 Ky+Sqrt),0,1}},{"H",{1,-1,0}},{"I",{1/2+Ky-1/2 Sqrt,1/2 (1-2 Ky+Sqrt),1}},{"J",{1/2+Ky-1/2 Sqrt,1/2 (1+Sqrt),1}},{"K",{1/2 (1-2 Ky+Sqrt),Ky,1}},{"L",{1,1/2 (-1-2 Ky-Sqrt),0}},{"M",{0,1/2 (1+Sqrt),1}},{"N",{0,1,0}}}}}
{{14,10},"AEFGAHIMBEHJBFKNCEMNCIKLDGKMDIJNFJLMGHLN",{{{"A",{0,0,1}},{"B",{Ky/(1+Ky) if 1+Ky!=0,1-Ky if 1+Ky!=0,1}},{"C",{1,1/2 (-1-Ky) if 1+Ky!=0,0}},{"D",{1/(1+Ky) if 1+Ky!=0,Ky if 1+Ky!=0,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{0,Ky if 1+Ky!=0,1}},{"H",{Ky/(1+Ky) if 1+Ky!=0,0,1}},{"I",{1,0,1}},{"J",{Ky/(1+Ky) if 1+Ky!=0,1,1}},{"K",{-1+2/(1+Ky) if 1+Ky!=0,Ky,1}},{"L",{(-1+Ky)/(1+Ky) if 1+Ky!=0,1,1}},{"M",{1,0,0}},{"N",{1,-1-Ky if 1+Ky!=0,0}}}}}
{{14,10},"ABDEAFGHBIJNCDIKCFLNDGMNEGJLEHKNFJKMHILM",{{{"A",{1,0,1}},{"B",{1,0,0}},{"C",{8/3,-4,1}},{"D",{0,0,1}},{"E",{4/3,0,1}},{"F",{8/3,-5,1}},{"G",{0,3,1}},{"H",{4/3,-1,1}},{"I",{1,-(3/2),0}},{"J",{1,-(9/4),0}},{"K",{4/3,-2,1}},{"L",{8/3,-3,1}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDNAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN",{{{"A",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy+1/(1+Gy) if 1+Gy!=0,1}},{"B",{0,1,1}},{"C",{-Gy-1/(1+Gy) if 1+Gy!=0,Gy if 1+Gy!=0,1}},{"D",{1,0,1}},{"E",{0,1,0}},{"F",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy^2/(1+Gy) if 1+Gy!=0,1}},{"G",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy,1}},{"H",{0,0,1}},{"I",{0,Gy/(1+Gy) if 1+Gy!=0,1}},{"J",{Gy/(1+Gy) if 1+Gy!=0,0,1}},{"K",{1,-1+1/(1+Gy) if 1+Gy!=0,0}},{"L",{1,0,0}},{"M",{-Gy if 1+Gy!=0,Gy if 1+Gy!=0,1}},{"N",{1,-1,0}}}}}
{{14,10},"ADEFAGHIBDGJBHKNCEKLCFJNDILNEGMNFHLMIJKM",{{{"A",{0,0,1}},{"B",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"C",{1-Cy if 3 Cy!=4,Cy,1}},{"D",{0,1,0}},{"E",{0,1 if 3 Cy!=4,1}},{"F",{0,1,1}},{"G",{1 if 3 Cy!=4,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"K",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"L",{1,-1,0}},{"M",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"N",{1,-1 if 3 Cy!=4,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{-(1/3),4/3,1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,-1,0}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{4/3,-(1/6),1}},{"C",{-(2/3),4/3,1}},{"D",{0,1,0}},{"E",{0,2/3,1}},{"F",{0,1,1}},{"G",{4/3,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{4/3,1/3,1}},{"K",{1/3,1/3,1}},{"L",{1,-1,0}},{"M",{2/3,1/3,1}},{"N",{1,-(1/2),0}}}}}
{{14,10},"ABFLAGHMBIMNCDLNCGIJDFKMEGKNEJLMFHJNHIKL",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{Cx,1-Cx if Cx!=1,1}},{"D",{0 if Cx!=1,1,1}},{"E",{0 if Cx!=1,1 if Cx!=1,1}},{"F",{0,1,1}},{"G",{1 if Cx!=1,0,1}},{"H",{1,0,1}},{"I",{1,-1 if Cx!=1,0}},{"J",{0 if Cx!=1,1 if Cx!=1,1}},{"K",{0 if Cx!=1,1,1}},{"L",{0,1 if Cx!=1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,-2,1}},{"D",{-2,1,1}},{"E",{4,-1,1}},{"F",{0,1,1}},{"G",{3,0,1}},{"H",{1,0,1}},{"I",{1,1,0}},{"J",{2,-1,1}},{"K",{2,1,1}},{"L",{0,-1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGHBIJNCEIKCFMNDGKNDHJMEHLNFJKLGILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,-1,0}},{"D",{1,0,1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,5/3,1}},{"C",{1,1/3,0}},{"D",{3,-(2/3),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{3,0,1}},{"I",{1,4/3,1}},{"J",{3,2/3,1}},{"K",{-1,2/3,1}},{"L",{1,2/3,1}},{"M",{0,1,0}},{"N",{1,-(1/3),0}}}}}
{{14,10},"ABLMAFGHBIJNCFKNCGILDFJMDHLNEGMNEJKLHIKM",{{{"A",{0,1,0}},{"B",{1,-(1/2),0}},{"C",{1/2 (-1+Sqrt),1,1}},{"D",{1/2 (3+Sqrt),0,1}},{"E",{1/2 (3+Sqrt),1/2 (-1-Sqrt),1}},{"F",{0,1/2 (3+Sqrt),1}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{-1,1,1}},{"J",{2+Sqrt,1/2 (-1-Sqrt),1}},{"K",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"L",{1,0,0}},{"M",{1,-1,0}},{"N",{1,0,1}}},{{"A",{0,1,0}},{"B",{1,-(1/2),0}},{"C",{1/2 (-1-Sqrt),1,1}},{"D",{1/2 (3-Sqrt),0,1}},{"E",{1/2 (3-Sqrt),1/2 (-1+Sqrt),1}},{"F",{0,1/2 (3-Sqrt),1}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{-1,1,1}},{"J",{2-Sqrt,1/2 (-1+Sqrt),1}},{"K",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"L",{1,0,0}},{"M",{1,-1,0}},{"N",{1,0,1}}}}}
{{14,10},"ABEMAFGHBIJNCFIKCGLNDEJLDFMNEHKNGJKMHILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{3,2/3,1}},{"D",{1,1,0}},{"E",{0,1/3,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{-1,0,1}},{"I",{-1,2/3,1}},{"J",{1,4/3,1}},{"K",{1,2/3,1}},{"L",{-1,-(2/3),1}},{"M",{0,1,0}},{"N",{1,1/3,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,-1,0}}}}}
{{14,10},"AELMBEFGBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL",{{{"A",{1,Ay,0}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{1,-1,1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{3/2,-1,1}},{"I",{-(1/2),1,1}},{"J",{1/2,1,1}},{"K",{1/2,-1,1}},{"L",{1,0,0}},{"M",{1,-2,0}},{"N",{1/2,0,1}}}}}
{{14,10},"ABEFAGHIBGMNCDJMCEKNDHLNEILMFHKMFIJNGJKL",{{{"A",{0,0,1}},{"B",{0,3/2,1}},{"C",{1/2,3/4,1}},{"D",{3/4,1/2,1}},{"E",{0,1,1}},{"F",{0,1,0}},{"G",{3/2,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{1,1/4,1}},{"K",{1,-(1/2),0}},{"L",{1/2,1/2,1}},{"M",{1,-1,0}},{"N",{1,1/2,1}}}}}
{{14,10},"ABGKACLMBHINCJKNDELNDHJMEIKMFGMNFHKLGIJL",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{3/2,1/3,1}},{"E",{1,-(2/3),0}},{"F",{2,2/3,1}},{"G",{0,2/3,1}},{"H",{2,1/3,1}},{"I",{1,-(1/3),0}},{"J",{1,1/3,1}},{"K",{0,1,0}},{"L",{2,0,1}},{"M",{1,0,0}},{"N",{1,2/3,1}}}}}
{{14,10},"AEFGBELMBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL",{{{"A",{1,Ay,0}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{1,1/2,1}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{1,-(1/2),0}},{"H",{2/3,1/3,1}},{"I",{-2,1,1}},{"J",{2,-1,1}},{"K",{2,1,1}},{"L",{0,0,1}},{"M",{0,1,1}},{"N",{2,0,1}}}}}
{{14,10},"ABFLAGHIBGMNCDLMCFJNDHKNEHJMEILNFIKMGJKL",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-(2/3),3/2,1}},{"D",{-(1/3),1,1}},{"E",{4/3,-(1/2),1}},{"F",{0,1,1}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{2/3,0,1}},{"J",{2/3,1/2,1}},{"K",{1/3,1/2,1}},{"L",{0,1/2,1}},{"M",{1,-(3/2),0}},{"N",{1,-(3/4),0}}}}}

mathe 发表于 2019-10-21 09:47:04

15棵树的情况也比较复杂,有12行的整数/实数解和13行的复数解
print(ACDHDFIJEGHKCEFLABJLBCGMAIKMBDENAFGNBHIOCJKOLMNO);
solve([+1-2*O_Y-1*O_X*O_Y+1*O_Y*O_Y,+1*O_X+1*O_X*O_X-2*O_Y-2*O_X*O_Y+1*O_Y*O_Y,-1+1*N_Y+1*O_Y,-1+1*L_X-1*O_X,+1+1*M_X-1*O_Y,-1+1*J_X-1*O_X+1*O_Y,+1*N_X-1*O_Y,-1+1*D_Y-1*O_X+1*O_Y,+1*I_Y+1*O_X-1*O_Y,-1+1*M_Y,+1*B_X-1*O_X,+1*I_X-1*O_X,+1*J_Y-1*O_Y,+1*K_Y-1*O_Y,-1+1*B_Y,+1+1*A_Y],);
print("A=(1,A_y,0) C=(1,0,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=1 F_y=0 G_x=0 G_y=1 H=(0,1,0) K_x=0 L_y=0 ");
print(ACDIBEFIBDHJDFGLAEKLABGMCEJMAFHNBCKNCGHOIJKOLMNO);
solve([+1-5/4*O_X+1/2*N_Y*O_X+1/2*O_X*O_X,+1*N_Y-5/8*O_X-3/4*N_Y*O_X+1/4*O_X*O_X,+1*N_Y*N_Y+9/16*O_X-1/8*N_Y*O_X-5/8*O_X*O_X,-3/2+1*L_Y+1*N_Y+1*O_X,+1*H_Y-2*N_Y,+1+1*M_Y,+1*G_Y+2*N_Y,+1*F_Y+1*N_Y,-2+1*M_X,-1/2+1*L_X-1*N_Y-1*O_X,-1+1*N_X,-2+1*G_X,-1+1*K_X,-1+1*K_Y,-1+1*O_Y,+1+1*E_Y,-2+1*A_X],);
print("A_y=0 B=(0,1,0) C_x=1 C_y=0 D_x=0 D_y=0 E=(1,E_y,0) F=(1,F_y,0) H_x=0 I=(1,0,0) J_x=0 J_y=1 ");
print(ADEFBFGICEHIACGKBEJKABHLCFJLDGHMAIJMBCDNDKLOEMNO);
solve([+1/2+1*O_Y,+1+1*H_X,-2+1*K_X,-7/2+1*O_X,-2+1*L_Y,+1/2+1*M_X,+1+1*G_Y,-3/2+1*N_X,-1+1*K_Y,-1+1*J_X,+1+1*D_Y,-1+1*J_Y,-1+1*A_Y,-1+1*L_X,+1/2+1*N_Y,+1/2+1*M_Y],);
print("A=(1,A_y,0) B_x=0 B_y=1 C_x=1 C_y=0 D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 H_y=0 I_x=0 I_y=0 ");
print(ADEGBCEIDFHICFGJABFKEHJKBGHLAIJMACLNBDMNCDKOELMO);
solve([+1-1*N_Y+1*N_Y*N_Y,+1*N_X+1*N_Y,-1+1*J_Y+1*N_Y,+1+1*O_X,-1+1*L_Y-1*N_Y,+1*K_X-1*N_Y,+1*A_Y+1*N_Y,+1+1*G_Y,+1*J_X-1*N_Y,+1*H_X-1*N_Y,+1*M_Y-1*N_Y,+1*B_Y-1*N_Y,-1+1*O_Y,-1+1*K_Y,+1+1*M_X,+1+1*L_X],);
print("A=(1,A_y,0) B_x=0 C_x=0 C_y=1 D=(1,0,0) E=(0,1,0) F_x=1 F_y=0 G=(1,G_y,0) H_y=0 I_x=0 I_y=0 ");
print(ADEGBDFICEFJCDHKCGILBEHMAFKMBGJNAHLNAIJOBKLOCMNO);
solve([+1-1*M_Y*N_Y+1*N_Y*N_Y,+1*M_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_X*M_Y+1*M_Y*N_Y-1*N_Y*N_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_Y*M_Y-1*M_Y*N_Y+1*O_Y,+1*N_Y-1*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_X*N_Y+1*M_Y*N_Y-1*N_Y*N_Y+1*O_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*C_X+1*M_Y-1*N_Y,-1+1*H_Y-1*M_Y,+1*F_Y-1*M_Y+1*O_Y,+1*B_X-1*M_X-1*M_Y+1*N_Y,+1*J_Y-1*N_Y,+1*K_Y-1*M_Y+1*N_Y,-1+1*H_X,-1+1*N_X,+1*F_X-1*M_X,+1*B_Y-1*M_Y+1*O_Y,+1*K_X-1*M_X,+1*D_Y-1*M_Y+1*O_Y],);
print("A=(0,1,0) C_y=0 D_x=0 E_x=0 E_y=1 G_x=0 G_y=0 I=(1,0,0) J=(1,J_y,0) L_x=1 L_y=0 O=(1,O_y,0) ");
print(ADEGBFGICEHIACFKBEJKABHLCGJLDFHMAIJMBCDNDKLOEFNO);
solve([+1/2+1*M_Y,+1+1*H_X,-2+1*K_X,-4+1*O_X,-2+1*L_Y,+1+1*O_Y,+1/2+1*M_X,-2+1*N_X,-1+1*K_Y,-1+1*J_X,+1+1*D_Y,-1+1*J_Y,-1+1*A_Y,-1+1*L_X,+1+1*N_Y,+1+1*F_Y],);
print("A=(1,A_y,0) B_x=0 B_y=1 C_x=1 C_y=0 D=(1,D_y,0) E=(1,0,0) F_x=0 G=(0,1,0) H_y=0 I_x=0 I_y=0 ");
print(ADEHBCFHDFGICEGJABGKHIJKBEIMACLMAFJNBDLNCDKOEFLO);
solve([+1+1*O_Y+1*O_Y*O_Y,+1*M_Y-1*O_Y,-2+1*M_X-1*O_Y,+1*K_X+1*O_Y,-1+1*O_X-1*O_Y,+1*N_Y-1*O_Y,+1+1*L_Y,+1*G_Y+1*O_Y,-1+1*C_Y-1*O_Y,-1+1*J_X,+1*B_Y-1*O_Y,-1+1*J_Y,-1+1*K_Y,-1+1*N_X,-1+1*L_X-1*O_Y,-1+1*E_X-1*O_Y],);
print("A_x=1 A_y=0 B=(1,B_y,0) C=(1,C_y,0) D_x=0 D_y=0 E_y=0 F=(0,1,0) G_x=0 H=(1,0,0) I_x=0 I_y=1 ");
print(ADEHBEGIBDFJAFGLCDILCEFMABKMACJNGHKNBCHOIJKOLMNO);
solve([+1-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+1*L_Y*O_X-1*N_Y*O_X+1*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*K_Y-1*L_Y*L_Y-1*L_Y*O_X-1*O_Y,+1*L_X+1*L_Y*M_X-1*L_Y*N_X+1*L_X*N_Y-1*O_X-1*N_Y*O_X-1*M_X*O_Y+1*N_X*O_Y,+1*L_Y-1*L_Y*O_X-1*O_Y,+1*H_Y*L_Y+1*L_Y*L_Y-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+2*L_Y*O_X-1*N_Y*O_X+2*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*L_X*L_Y-1*L_Y*M_X-1*N_Y-1*L_X*N_Y+1*M_X*N_Y+2*L_Y*O_X+2*O_Y,+1*M_X+1*L_Y*M_X-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+1*L_Y*O_X-1*N_Y*O_X+1*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*H_Y*M_X-1*L_Y*O_X-1*O_Y,+1*N_X+1*M_X*N_Y-1*O_X-1*N_Y*O_X-1*M_X*O_Y+1*N_X*O_Y,+1*H_Y*N_X+1*L_Y*N_X-1*M_X*N_Y+1*O_X-1*L_Y*O_X+1*N_Y*O_X-1*O_Y+1*M_X*O_Y-1*N_X*O_Y,+1*H_Y*O_X-1*O_Y,+1*K_X+1*L_Y,+1+1*A_Y+1*L_Y,+1+1*M_Y,+1*F_X-1*M_X,+1*C_Y-1*L_Y,+1*I_Y-1*L_Y,+1*C_X-1*M_X],);
print("A=(1,A_y,0) B_x=0 B_y=0 D=(1,0,0) E=(0,1,0) F_y=0 G_x=0 G_y=1 H=(1,H_y,0) I_x=0 J_x=1 J_y=0 ");
print(ADFGBDEHBCFJAEIJACHKBGIKCEGLFHILDJKLABMNCDMOEFNO);
solve([+1-1*O_Y+1*O_Y*O_Y,+1*L_X-1*O_Y,+1+1*I_X-1*O_Y,-1+1*K_Y+1*O_Y,+1+1*M_Y,+1*N_X+1*O_Y,-1+1*I_Y,-1+1*L_Y,+1*K_X-1*O_Y,+1*J_X-1*O_Y,+1*G_Y+1*O_Y,+1+1*A_Y,-1+1*M_X,-1+1*O_X,+1*N_Y-1*O_Y,+1*E_Y-1*O_Y],);
print("A=(1,A_y,0) B_x=0 B_y=0 C_x=1 C_y=0 D=(0,1,0) E_x=0 F=(1,0,0) G=(1,G_y,0) H_x=0 H_y=1 J_y=0 ");
print(ADFHCDGIBDEJABILEHKLCEFMAGJMBFGNACKNBCHOIJKOLMNO);
solve([+1-3*O_Y+3*O_Y*O_Y,+1+1*M_Y-3*O_Y,-1+1*M_X+3*O_Y,+1+1*N_X-3*O_Y,-3+1*L_X+3*O_Y,-2+1*K_X+3*O_Y,-1+1*O_X+1*O_Y,-2+1*E_Y+3*O_Y,-1+1*K_Y,-1+1*N_Y,+1+1*H_Y,-1+1*F_Y+3*O_Y,-1+1*E_X,+1+1*J_Y-3*O_Y,-1+1*J_X,+1+1*G_Y-3*O_Y],);
print("A=(1,0,0) B_x=1 B_y=0 C_x=0 C_y=1 D=(0,1,0) F=(1,F_y,0) G_x=0 H=(1,H_y,0) I_x=0 I_y=0 L_y=0 ");
print(ADGHCEHJBGIJABEKCFGKBFHLACILDEIMAFJMBCDNDKLOEFNO);
solve([+1/2+1*M_Y,-5/3+1*O_Y,-1/3+1*N_Y,-2+1*K_X,-4/3+1*O_X,-2+1*L_Y,+1/2+1*M_X,+1+1*I_X,-2/3+1*N_X,+1+1*E_Y,+1+1*D_Y,-1+1*F_Y,-1+1*F_X,-1+1*K_Y,-1+1*A_Y,-1+1*L_X],);
print("A=(1,A_y,0) B_x=1 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) E_x=0 G=(1,0,0) H=(0,1,0) I_y=0 J_x=0 J_y=0 ");
print(ADGHCFGIBEHIBGJKCHJLAIKLABFMDEJMACENDFKNBCDOEFLO);
solve([-1/2+1*K_X,+2+1*M_Y,-3/2+1*M_X,-3+1*N_Y,+1/2+1*N_X,-2/3+1*O_Y,-2+1*L_Y,+4+1*D_Y,+1+1*K_Y,-1/2+1*J_X,-2+1*J_Y,-2+1*C_Y,-1/2+1*B_X,+2+1*A_Y,+1+1*L_X,-1/3+1*O_X],);
print("A=(1,A_y,0) B_y=0 C_x=0 D=(1,D_y,0) E_x=1 E_y=0 F_x=0 F_y=1 G=(0,1,0) H=(1,0,0) I_x=0 I_y=0 ");
print(AEFGCDEIABHIBDGLACJLBCFMADKMBEJNFHKNCGHOIJKOLMNO);
solve([+1-2*O_Y+1/2*O_Y*O_Y,-1+1*N_Y+1*O_Y,-1/2+1*K_X,-1+1*N_X+1/2*O_Y,-1/2+1*M_X+1/2*O_Y,+2+1*F_Y-1*O_Y,-1+1*M_Y+1/2*O_Y,-1+1*O_X+1*O_Y,+1*L_X+1/2*O_Y,-1+1*K_Y+1/2*O_Y,+1+1*G_Y,-1+1*J_X+1/2*O_Y,-1+1*L_Y,-1+1*J_Y,-1+1*D_Y+1/2*O_Y,-1+1*B_X+1/2*O_Y],);
print("A=(1,0,0) B_y=0 C_x=0 C_y=1 D_x=0 E=(0,1,0) F=(1,F_y,0) G=(1,G_y,0) H_x=1 H_y=0 I_x=0 I_y=0 ");
print(BCEFADEGBGIKAFJKDFHLACILCGHMBDJMABHNEIJNCDKOELMO);
solve([+1-1*N_Y+1*N_Y*N_Y,+1*H_X+1*N_Y,-1+1*L_Y-1*N_Y,+1*N_X-1*N_Y,-2+1*O_Y,+1+1*O_X,-1+1*J_Y,-1+1*M_Y,+1*H_Y-1*N_Y,+1*F_Y+1*N_Y,+1*J_X-1*N_Y,+1*I_X-1*N_Y,+1+1*C_Y,+1*A_Y-1*N_Y,+1+1*M_X,+1+1*L_X],);
print("A_x=0 B=(1,0,0) C=(1,C_y,0) D_x=0 D_y=1 E=(0,1,0) F=(1,F_y,0) G_x=0 G_y=0 I_y=0 K_x=1 K_y=0 ");
print(BCEGADEIABFKEHJKBHILAGJLDFGMACHMCFINBDJNCDKOEFLO);
solve([-1/2+1*M_Y,-1+1*G_Y,-2+1*O_Y,+1/2+1*M_X,+2+1*N_X,+1+1*L_Y,+1+1*O_X,+1+1*H_Y,-1+1*H_X,-1+1*J_X,-1+1*J_Y,-1+1*N_Y,+1+1*C_Y,+1+1*I_Y,+1+1*L_X,+1+1*F_X],);
print("A_x=0 A_y=0 B=(1,0,0) C=(1,C_y,0) D_x=0 D_y=1 E=(0,1,0) F_y=0 G=(1,G_y,0) I_x=0 K_x=1 K_y=0 ");
print(BCEHACGIBFGKAEJKAFHLDEILABDMCFJMDGHNBIJNCDKOLMNO);
solve([-5/3+1*O_Y,-2+1*N_X,-3/2+1*L_Y,-2+1*N_Y,-1+1*H_Y,+1+1*M_X,-1/2+1*L_X,+1+1*J_X,-1+1*D_Y,+1+1*E_Y,-2+1*J_Y,-2+1*I_Y,-1+1*D_X,-1+1*O_X,-1+1*M_Y,+1+1*F_X],);
print("A_x=0 A_y=1 B=(1,0,0) C=(0,1,0) E=(1,E_y,0) F_y=0 G_x=0 G_y=0 H=(1,H_y,0) I_x=0 K_x=1 K_y=0 ");
print(BDEFACEGDGHICFHJBCILAFKLADJMBGKMABHNEIJNCDKOELMO);
solve([+1-1*O_Y+1*O_Y*O_Y,-1+1*H_X+1*O_Y,+1+1*K_X,+1+1*O_X-1*O_Y,-1+1*F_Y+1*O_Y,-1+1*L_Y-1*O_Y,-1+1*N_Y+1*O_Y,-1+1*J_Y,+1*B_Y+1*O_Y,-1+1*M_Y,-1+1*N_X,-1+1*J_X,+1*K_Y-1*O_Y,+1*C_Y-1*O_Y,+1+1*L_X-1*O_Y,+1+1*M_X-1*O_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 D=(1,0,0) E=(0,1,0) F=(1,F_y,0) G_x=0 G_y=0 H_y=0 I_x=1 I_y=0 ");
print(BDEFADGHACEJEHIKCFGLABILBGJMAFKMBCHNDIJNCDKOELMO);
solve([-1/2+1*O_Y,-1+1*F_Y,+1/2+1*L_X,+1+1*O_X,-1/2+1*M_X,+2+1*N_Y,+1+1*K_Y,+1+1*B_Y,+1+1*I_Y,+1+1*H_Y,-1+1*I_X,-1+1*N_X,+1+1*K_X,+1+1*C_X,-1/2+1*L_Y,-1/2+1*M_Y],);
print("A_x=0 A_y=0 B=(1,B_y,0) C_y=0 D=(0,1,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=1 H_x=0 J_x=1 J_y=0 ");
print(BDEFCFGHAEHJBGIJAFIKADGLBHKLABCMCEINDJMNCDKOELMO);
solve([+1+1*O_Y,+2+1*D_Y,-3/4+1*N_X,-3/4+1*O_X,-1+1*L_X,-1/2+1*N_Y,-3/2+1*M_X,-1/2+1*K_X,+1/2+1*K_Y,-1/2+1*I_Y,+1+1*B_Y,-1/2+1*I_X,-1/2+1*C_Y,-1/2+1*A_X,+1+1*M_Y,+1+1*L_Y],);
print("A_y=0 B=(1,B_y,0) C_x=0 D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 G_y=1 H_x=0 H_y=0 J_x=1 J_y=0 ");
print(BDEGACFGDFHICEHJABHLGIJLBCIMAEKMADJNBFKNCDKOEFLOGMNO);
solve([+1-1*O_Y+1*O_Y*O_Y,-1+1*H_X+1*O_Y,+1+1*K_X,+1+1*O_X-1*O_Y,-1+1*L_Y+1*O_Y,-1+1*E_Y+1*O_Y,-1+1*M_Y-1*O_Y,-1+1*N_Y,-1+1*J_X,-1+1*L_X,+1*K_Y-1*O_Y,+1*C_Y-1*O_Y,-1+1*J_Y,+1*B_Y+1*O_Y,+1+1*M_X-1*O_Y,+1+1*N_X-1*O_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 D=(1,0,0) E=(1,E_y,0) F_x=0 F_y=0 G=(0,1,0) H_y=0 I_x=1 I_y=0 ");
print(BDHICDFJADEKCEGLAFILAGHMBEJMBFGNCHKNABCOIJKOLMNO);
solve([+1+2*L_X*N_X+1*L_X*N_Y-1*O_X-1*N_X*O_X-1*N_Y*O_X,+1*L_X-1*L_X*N_Y+1*O_X+1*N_Y*O_X,+1*N_X-2*L_X*N_X-1*L_X*N_Y+1*O_X+1*N_Y*O_X,+1*N_X*N_X-1*O_X-1*N_Y*O_X,+1*N_Y-1*O_X-1*N_Y*O_X,-1+1*M_Y-2*N_X-1*N_Y,+1*G_Y-1*N_X-1*N_Y,-2+1*M_X-1*N_X,-1+1*G_X-1*N_X,-1+1*H_Y-1*N_X,-1+1*E_Y-1*N_X,+1*C_Y+1*N_X,+1*B_Y-1*N_X,-1+1*O_Y,-1+1*K_Y,-1+1*K_X,-1+1*E_X],);
print("A_x=1 A_y=0 B=(1,B_y,0) C_x=0 D=(0,1,0) F_x=0 F_y=0 H=(1,H_y,0) I=(1,0,0) J_x=0 J_y=1 L_y=0 ");
print(BEFGCDFHABHJACEKBDIKADGLAFIMCGJMEHINBCLNDEJOFKLO);
solve([-1+1*N_X,+3+1*O_Y,+2+1*O_X,-2+1*M_Y,+1+1*M_X,+1+1*K_Y,+1+1*G_Y,+1+1*I_Y,-1+1*E_Y,+1+1*I_X,-1+1*N_Y,-1+1*L_Y,+1+1*D_Y,+1+1*A_X,+2+1*K_X,+2+1*L_X],);
print("A_y=0 B=(1,0,0) C_x=0 C_y=1 D_x=0 E=(1,E_y,0) F=(0,1,0) G=(1,G_y,0) H_x=0 H_y=0 J_x=1 J_y=0 ");
print(BEFGCDFIADGJACEKBDHKABILAFHMBCJMCGHNDELNEIJOFKLO);
solve([-3/2+1*O_Y,+1+1*M_X,+1+1*N_Y,+1/2+1*K_Y,-1/2+1*L_Y,+2+1*M_Y,-1+1*N_X,+1/2+1*O_X,+1+1*H_Y,+1+1*C_Y,-1+1*B_Y,+1+1*H_X,+1+1*E_Y,+1+1*A_X,+1/2+1*K_X,+1/2+1*L_X],);
print("A_y=0 B=(1,B_y,0) C_x=0 D_x=0 D_y=0 E=(1,E_y,0) F=(0,1,0) G=(1,0,0) I_x=0 I_y=1 J_x=1 J_y=0 ");
print(BEFHAGHJCFIJEGIKADFLBCGLDHIMABKMACENBDJNCDKOELMO);
solve([+1-1*O_Y+1/2*O_Y*O_Y,+1*N_X+1/2*O_Y-1*N_X*O_Y,-3+1*O_X+1*O_Y,-2+1*L_X+1*O_Y,-1+1*C_X+1*O_Y,+1+1*K_X-1*O_Y,-1+1*J_Y+1/2*O_Y,+1+1*B_Y-1*O_Y,+1*D_Y-1/2*O_Y,-1+1*N_Y,-1+1*C_Y,-1+1*D_X,-1+1*M_X,+1+1*F_Y-1/2*O_Y,+1*L_Y-1*O_Y,+1*M_Y-1*O_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H=(0,1,0) I_x=1 I_y=0 J_x=0 K_y=0 ");
print(BEFHCDGHACFJAHIKDFILBGJLABDMCEIMAEGNBCKNDEJOFGKO);
solve([-2+1*L_X,-1/2+1*M_Y,+1/2+1*N_Y,+1+1*K_X,+1/2+1*M_X,+1+1*O_Y,+1/2+1*N_X,-2+1*O_X,+1+1*I_X,-1+1*L_Y,-1+1*I_Y,-1+1*B_Y,+1+1*E_Y,+1+1*A_X,+1+1*K_Y,+1+1*G_Y],);
print("A_y=0 B=(1,B_y,0) C_x=0 C_y=0 D_x=0 D_y=1 E=(1,E_y,0) F=(1,0,0) G_x=0 H=(0,1,0) J_x=1 J_y=0 ");
print(CDEFBFGIAEGJBEHKACIKAFHLBCJLABDMCGHMDIJNDKLOEMNO);
solve([+1/2+1*O_Y,+5/2+1*O_X,+2+1*K_X,+1/2+1*M_X,+2+1*L_Y,+1+1*L_X,+1+1*K_Y,-3/2+1*N_X,+1+1*H_Y,+1+1*H_X,+1+1*D_Y,-1+1*C_Y,+1+1*A_X,+1+1*B_Y,+1/2+1*N_Y,+1/2+1*M_Y],);
print("A_y=0 B_x=0 C=(1,C_y,0) D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 G_y=0 I_x=0 I_y=1 J_x=1 J_y=0 ");
print(CDEGBDFHEFIJACFKAGHLBCJLADIMBGKMABENCHINDJKOELMO);
solve([-2+1*L_X,-2+1*N_X,+1+1*O_X,-3+1*O_Y,+1+1*H_Y,-2+1*G_Y,+1+1*K_Y,-1+1*M_X,-1+1*N_Y,-1+1*A_Y,-1+1*C_Y,-1+1*A_X,+1+1*K_X,+1+1*J_X,-3+1*L_Y,-3+1*M_Y],);
print("B_x=0 B_y=1 C=(1,C_y,0) D=(0,1,0) E=(1,0,0) F_x=0 F_y=0 G=(1,G_y,0) H_x=0 I_x=1 I_y=0 J_y=0 ");
print(CDGIEFHJADFKBEGKBDHLAEILBCFMAGJMACHNBIJNCKLODMNO);
solve([+1-1*O_Y+1*O_Y*O_Y,+2/3+1*C_Y-1/3*O_Y,-1+1*O_X+2*O_Y,-1+1*J_X+1*O_Y,+1*H_Y-1*O_Y,+1+1*L_Y-1*O_Y,-2+1*L_X+1*O_Y,-1+1*N_Y-1*O_Y,-1+1*F_Y+1*O_Y,-1+1*M_Y,-2+1*H_X+1*O_Y,-1+1*J_Y,-2+1*B_X+1*O_Y,+1+1*I_Y,-1+1*N_X+2*O_Y,-1+1*M_X+2*O_Y],);
print("A_x=0 A_y=1 B_y=0 C=(1,C_y,0) D=(0,1,0) E_x=1 E_y=0 F_x=0 G=(1,0,0) I=(1,I_y,0) K_x=0 K_y=0 ");
print(CEFHBGHJAFIJEGIKBDFLACGLADHMBCIMDEJNABKNCDKOELMO);
solve([+1+1*K_Y*O_X-1*O_Y,+1*K_Y-1*N_Y-1*M_Y*N_Y+1*O_X,+1*K_Y*K_Y+2*M_Y*N_Y-1*N_Y*N_Y-2*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X+1*O_Y,+1*M_Y+1*O_X-1*M_Y*O_X+1*N_Y*O_X-1*O_Y,+1*K_Y*M_Y-1*M_Y*N_Y+1*O_X,+1*M_Y*M_Y-1*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X,+1*K_Y*N_Y+1*M_Y*N_Y-1*N_Y*N_Y+1*O_X-1*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X,+1*A_X+1*K_Y-1*N_Y,+1+1*I_Y-1*K_Y-1*M_Y+1*N_Y,+1*B_X-1*M_Y,-1+1*D_Y-1*K_Y,-1+1*D_X,-1+1*F_Y+1*K_Y+1*M_Y-1*N_Y,-1+1*L_Y,-1+1*N_X,-1+1*A_Y,+1*L_X-1*O_X,+1*M_X-1*O_X],);
print("B_y=0 C_x=0 C_y=1 E=(0,1,0) F_x=0 G=(1,0,0) H_x=0 H_y=0 I=(1,I_y,0) J_x=1 J_y=0 K=(1,K_y,0) ");
print(CEGIAEFJFGHKABIKBDFLACHLADGMBCJMBEHNDIJNCDKOELMO);
solve([+1-4*O_X-1*O_X*O_X,-1/2+1*N_X+1/2*O_X,-1+1*N_Y+1*O_X,-1-1*O_X+1*O_Y,-1/2+1*D_X-1/2*O_X,-1/2+1*M_Y-1/2*O_X,+1*L_Y-1*O_X,-1/2+1*B_Y+1/2*O_X,+3/2+1*C_Y+1/2*O_X,-1/2+1*H_X+1/2*O_X,-1/2+1*D_Y-1/2*O_X,+1/2+1*I_Y+1/2*O_X,-1/2+1*B_X+1/2*O_X,-1/2+1*A_Y-1/2*O_X,+1*L_X-1*O_X,+1*M_X-1*O_X],);
print("A_x=0 C=(1,C_y,0) E=(0,1,0) F_x=0 F_y=0 G=(1,0,0) H_y=0 I=(1,I_y,0) J_x=0 J_y=1 K_x=1 K_y=0 ");
print(CEGIDEFJABEKFHIKAFGLBCHLBDGMACJMADHNBIJNCDKOLMNO);
solve([+1-1*O_Y-1*O_Y*O_Y,-1+1*N_X+1*O_Y,+1+1*K_Y+1*O_Y,-1+1*F_X+1*O_Y,+1*L_X+1*O_Y,-2+1*H_Y-1*O_Y,+1*M_Y+1*O_Y,+1+1*A_Y+1*O_Y,-1+1*L_Y-1*O_Y,+1*B_X+1*O_Y,-1+1*B_Y,-1+1*N_Y,-1+1*K_X,-1+1*O_X,+1*G_Y-1*O_Y,+1*H_X+1*O_Y],);
print("A=(1,A_y,0) C=(0,1,0) D_x=1 D_y=0 E_x=0 E_y=0 F_y=0 G_x=0 I_x=0 I_y=1 J=(1,0,0) M=(1,M_y,0) ");
print(CFGHBEGIADHIAGJKBHJLCIKLABFMDEJMACENDFKNBCDOEFLO);
solve([+1+1*O_X+1/3*O_X*O_X,+1*H_Y-1/3*O_X,+1+1*C_Y+1/3*O_X,-3+1*N_X,+3+1*L_X+1*O_X,+2+1*N_Y+1*O_X,+1*K_X+1*O_X,+1+1*I_Y+1*O_X,-1+1*J_Y-1*O_X,+1*J_X+1*O_X,+2+1*D_Y+1*O_X,+2+1*K_Y+1*O_X,+1*A_X+1*O_X,-3+1*D_X-1*O_X,-1+1*L_Y,-1+1*O_Y],);
print("A_y=0 B_x=0 B_y=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G=(0,1,0) H=(1,H_y,0) I_x=0 M_x=1 M_y=0 ");
print(CFHIDEGJAFGKBEIKBDHLACJLBCGMAEHMADINBFJNCDKOEFLO);
solve([+1+1*O_Y-1*O_Y*O_Y,+1*N_X+2*N_X*O_Y-1*O_Y*O_Y,-2+1*M_X+1*O_Y,+1+1*E_X-1*O_Y,-1+1*J_Y-2*O_Y,+1*B_Y-1*O_Y,-1+1*N_Y-1*O_Y,+1*L_Y-1*O_Y,-1+1*D_Y-1*O_Y,-1+1*I_Y-1*O_Y,-2+1*B_X+1*O_Y,-1+1*E_Y,-1+1*D_X,-1+1*O_X,-2+1*G_X+1*O_Y,-1+1*M_Y],);
print("A=(1,0,0) C=(0,1,0) F_x=0 F_y=0 G_y=0 H_x=0 H_y=1 I_x=0 J=(1,J_y,0) K_x=1 K_y=0 L=(1,L_y,0) ");
print(DEFHBCFIAFGJBDGKACHKCEGLADILABEMBHJNCDMNEIJOKLMO);
solve([+3+1*O_Y,+8+1*O_X,-4+1*L_X,+2+1*M_X,-1/2+1*E_Y,-2+1*J_X,+1+1*N_X,+1+1*N_Y,-2+1*J_Y,-2+1*A_X,+1+1*M_Y,-1+1*H_Y,-2+1*G_X,+1+1*C_Y,-1+1*L_Y,-1+1*A_Y],);
print("B_x=0 B_y=0 C_x=0 D=(1,0,0) E=(1,E_y,0) F=(0,1,0) G_y=0 H=(1,H_y,0) I_x=0 I_y=1 K_x=1 K_y=0 ");
print(DEGICFHIBFGKAEJKADHLBCJLACGMBEHMABINDFJNCDKOEFLO);
solve([+1-1/3*N_Y*N_Y-1/3*O_Y+1/3*N_Y*O_Y,+1*M_X-1/2*M_X*N_Y+1/3*N_Y*N_Y-1/6*O_Y+1/6*N_Y*O_Y,+1*N_Y-2/3*N_Y*N_Y+1/3*O_Y-1/3*N_Y*O_Y,-2+1*L_Y+1*N_Y,+1+1*J_Y-1*N_Y,-1+1*J_X+1*N_Y,+1+1*L_X,+2+1*E_Y-1*N_Y,+1*N_X+1*N_Y,-1+1*O_X+1*O_Y,-1+1*H_Y+1*N_Y,+1*A_X+1*N_Y,+1+1*D_Y,+1*B_X+1*N_Y,-1+1*M_Y,-1+1*A_Y],);
print("B_y=0 C_x=0 C_y=1 D=(1,D_y,0) E=(1,E_y,0) F_x=0 F_y=0 G=(1,0,0) H_x=0 I=(0,1,0) K_x=1 K_y=0 ");
print(DEHICFGJAEGKBFHKBGILAHJLBCEMADFMACINBDJNCDKOEFLO);
solve([+1-1*N_X*N_X-1*N_Y-1*N_X*N_Y,+1*N_X+2*N_Y-1*N_X*N_Y-1*N_Y*N_Y,+1*I_Y+1*N_X+1*N_Y,+1+1*J_X-1*N_X-1*N_Y,-1+1*M_Y+1*N_X+1*N_Y,-1+1*G_Y-1*N_X-1*N_Y,+1*M_X-1*N_X-1*N_Y,+1*C_Y+1*N_X+1*N_Y,+1+1*O_Y,-1+1*L_Y,+1*C_X-1*N_X-1*N_Y,-1+1*J_Y,+1+1*D_Y,+1*B_X-1*N_X-1*N_Y,-1+1*L_X,-1+1*O_X],);
print("A_x=0 A_y=1 B_y=0 D=(1,D_y,0) E=(0,1,0) F_x=1 F_y=0 G_x=0 H=(1,0,0) I=(1,I_y,0) K_x=0 K_y=0 ");
print(DFGIACFJBGHJBCDKAEGKADHLABIMCELMBEFNCHINDEJOFKLO);
solve([-1/3+1*M_Y,+2/3+1*M_X,-2+1*O_Y,+2+1*N_Y,-3+1*L_Y,+1+1*N_X,-1+1*I_Y,+2+1*O_X,+1+1*E_X,+1+1*B_X,+1+1*C_Y,-1+1*E_Y,+1+1*D_Y,-1+1*K_Y,+2+1*L_X,+2+1*K_X],);
print("A_x=0 A_y=1 B_y=0 C_x=0 D=(1,D_y,0) F=(0,1,0) G=(1,0,0) H_x=1 H_y=0 I=(1,I_y,0) J_x=0 J_y=0 ");
print(EFGHADFIBCFJACHKBGIKABELAGJMCDLMBDHNCEINDEJOFKLO);
solve([+2/3+1*M_Y,-1/3+1*M_X,+3/2+1*O_Y,+2+1*J_Y,+1/2+1*L_Y,+2+1*G_Y,-1/2+1*O_X,-2+1*N_X,+1+1*N_Y,+1+1*D_Y,+1+1*E_Y,-1+1*J_X,-1+1*B_X,+1+1*B_Y,-1/2+1*L_X,-1/2+1*K_X],);
print("A_x=0 A_y=0 C_x=1 C_y=0 D_x=0 E=(1,E_y,0) F=(0,1,0) G=(1,G_y,0) H=(1,0,0) I_x=0 I_y=1 K_y=0 ");
print(EFGIABGJCFHJBEHKBDFLACKLCDGMAHIMADENBCINDJKOELMO);
solve([+1-2*O_Y-1/4*O_Y*O_Y,+1*K_Y-1*O_Y+1/2*K_Y*O_Y,-3/2+1*N_Y-1/4*O_Y,-1+1*O_X+1/2*O_Y,+3/2+1*N_X+1/4*O_Y,-3/2+1*H_X-1/4*O_Y,-1/2+1*M_Y+1/4*O_Y,-1/2+1*L_Y-1/4*O_Y,+1/2+1*E_Y-1/4*O_Y,+1/2+1*I_Y+1/4*O_Y,-1/2+1*D_Y-1/4*O_Y,-1/2+1*B_Y-1/4*O_Y,-1+1*M_X,-1+1*D_X,-1/2+1*L_X+1/4*O_Y,-1+1*K_X+1*K_Y],);
print("A_x=0 A_y=1 B_x=0 C_x=1 C_y=0 E=(1,E_y,0) F=(1,0,0) G=(0,1,0) H_y=0 I=(1,I_y,0) J_x=0 J_y=0 ");
print(FGHIBEGJACHJAEFKCDFLABILADGMBCKMBDHNCEINDJKOELMO);
solve([+1-1*O_Y+1/5*O_Y*O_Y,+1*N_Y+1*O_Y-1*N_Y*O_Y-2/5*O_Y*O_Y,-1+1*M_X+1*O_Y,+1+1*L_Y-1*O_Y,-2+1*L_X+1*O_Y,+1+1*O_X,-3+1*K_Y+1*O_Y,-3+1*F_X+1*O_Y,+1*N_X+1*N_Y,+2+1*E_Y-1*O_Y,-2+1*C_Y+1*O_Y,-1+1*D_Y,+1+1*D_X,+1+1*K_X,-1+1*M_Y,+1+1*B_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 E=(1,E_y,0) F_y=0 G=(1,0,0) H_x=0 H_y=0 I_x=1 I_y=0 J=(0,1,0) ");


=============
wayne实数解
{{15,12},"ACDHDFIJEGHKCEFLABJLBCGMAIKMBDENAFGNBHIOCJKOLMNO",{{{"A",{1,-1,0}},{"B",{Root[-1+#1^2+#1^3&,1,0],1,1}},{"C",{1,0,0}},{"D",{1,Root[-1-#1+#1^3&,1,0],0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{Root[-1+#1^2+#1^3&,1,0],Root,1}},{"J",{Root[-1-#1+#1^3&,1,0],1+Root,1}},{"K",{0,1+Root,1}},{"L",{Root[-1+#1-2 #1^2+#1^3&,1,0],0,1}},{"M",{Root,1,1}},{"N",{1+Root,Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"O",{Root[-1+#1^2+#1^3&,1,0],1+Root,1}}}}}
{{15,12},"ADEFBFGICEHIACGKBEJKABHLCFJLDGHMAIJMBCDNDKLOEMNO",{{{"A",{1,1,0}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,-1,1}},{"H",{-1,0,1}},{"I",{0,0,1}},{"J",{1,1,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{3/2,-(1/2),1}},{"O",{7/2,-(1/2),1}}}}}
{{15,12},"ADEGBFGICEHIACFKBEJKABHLCGJLDFHMAIJMBCDNDKLOEFNO",{{{"A",{1,1,0}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,-1,1}},{"G",{0,1,0}},{"H",{-1,0,1}},{"I",{0,0,1}},{"J",{1,1,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{2,-1,1}},{"O",{4,-1,1}}}}}
{{15,12},"ADEHBEGIBDFJAFGLCDILCEFMABKMACJNGHKNBCHOIJKOLMNO",{{{"A",{1,Root,0}},{"B",{0,0,1}},{"C",{Root[-1+#1+#1^3&,1,0],Root[-1+#1+#1^3&,1,0]^2,1}},{"D",{1,0,0}},{"E",{0,1,0}},{"F",{Root[-1+#1+#1^3&,1,0],0,1}},{"G",{0,1,1}},{"H",{1,Root[-1+#1+#1^3&,1,0],0}},{"I",{0,Root[-1+#1+#1^3&,1,0]^2,1}},{"J",{1,0,1}},{"K",{-Root[-1+#1+#1^3&,1,0]^2,Root[-1+#1+#1^3&,1,0],1}},{"L",{-1+Root[-8+4 #1+#1^3&,1,0],Root[-1+#1+#1^3&,1,0]^2,1}},{"M",{Root[-1+#1+#1^3&,1,0],-1,1}},{"N",{Root[-1+5 #1-2 #1^2+#1^3&,1,0],Root[-3-#1+2 #1^2+#1^3&,1,0],1}},{"O",{Root[-1+4 #1-5 #1^2+3 #1^3&,1,0],Root[-1+2 #1+5 #1^2+3 #1^3&,1,0],1}}}}}
{{15,12},"ADGHCEHJBGIJABEKCFGKBFHLACILDEIMAFJMBCDNDKLOEFNO",{{{"A",{1,1,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{0,-1,1}},{"F",{1,1,1}},{"G",{1,0,0}},{"H",{0,1,0}},{"I",{-1,0,1}},{"J",{0,0,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{2/3,1/3,1}},{"O",{4/3,5/3,1}}}}}
{{15,12},"ADGHCFGIBEHIBGJKCHJLAIKLABFMDEJMACENDFKNBCDOEFLO",{{{"A",{1,-2,0}},{"B",{1/2,0,1}},{"C",{0,2,1}},{"D",{1,-4,0}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{0,1,0}},{"H",{1,0,0}},{"I",{0,0,1}},{"J",{1/2,2,1}},{"K",{1/2,-1,1}},{"L",{-1,2,1}},{"M",{3/2,-2,1}},{"N",{-(1/2),3,1}},{"O",{1/3,2/3,1}}}}}
{{15,12},"AEFGCDEIABHIBDGLACJLBCFMADKMBEJNFHKNCGHOIJKOLMNO",{{{"A",{1,0,0}},{"B",{-(1/Sqrt),0,1}},{"C",{0,1,1}},{"D",{0,-(1/Sqrt),1}},{"E",{0,1,0}},{"F",{1,Sqrt,0}},{"G",{1,-1,0}},{"H",{1,0,1}},{"I",{0,0,1}},{"J",{-(1/Sqrt),1,1}},{"K",{1/2,-(1/Sqrt),1}},{"L",{-1-1/Sqrt,1,1}},{"M",{-(1/2)-1/Sqrt,-(1/Sqrt),1}},{"N",{-(1/Sqrt),-1-Sqrt,1}},{"O",{-1-Sqrt,2+Sqrt,1}}},{{"A",{1,0,0}},{"B",{1/Sqrt,0,1}},{"C",{0,1,1}},{"D",{0,1/Sqrt,1}},{"E",{0,1,0}},{"F",{1,-Sqrt,0}},{"G",{1,-1,0}},{"H",{1,0,1}},{"I",{0,0,1}},{"J",{1/Sqrt,1,1}},{"K",{1/2,1/Sqrt,1}},{"L",{-1+1/Sqrt,1,1}},{"M",{-(1/2)+1/Sqrt,1/Sqrt,1}},{"N",{1/Sqrt,-1+Sqrt,1}},{"O",{-1+Sqrt,2-Sqrt,1}}}}}
{{15,12},"BCEGADEIABFKEHJKBHILAGJLDFGMACHMCFINBDJNCDKOEFLO",{{{"A",{0,0,1}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{-1,0,1}},{"G",{1,1,0}},{"H",{1,-1,1}},{"I",{0,-1,1}},{"J",{1,1,1}},{"K",{1,0,1}},{"L",{-1,-1,1}},{"M",{-(1/2),1/2,1}},{"N",{-2,1,1}},{"O",{-1,2,1}}}}}
{{15,12},"BCEHACGIBFGKAEJKAFHLDEILABDMCFJMDGHNBIJNCDKOLMNO",{{{"A",{0,1,1}},{"B",{1,0,0}},{"C",{0,1,0}},{"D",{1,1,1}},{"E",{1,-1,0}},{"F",{-1,0,1}},{"G",{0,0,1}},{"H",{1,1,0}},{"I",{0,2,1}},{"J",{-1,2,1}},{"K",{1,0,1}},{"L",{1/2,3/2,1}},{"M",{-1,1,1}},{"N",{2,2,1}},{"O",{1,5/3,1}}}}}
{{15,12},"BDEFADGHACEJEHIKCFGLABILBGJMAFKMBCHNDIJNCDKOELMO",{{{"A",{0,0,1}},{"B",{1,-1,0}},{"C",{-1,0,1}},{"D",{0,1,0}},{"E",{1,0,0}},{"F",{1,1,0}},{"G",{0,1,1}},{"H",{0,-1,1}},{"I",{1,-1,1}},{"J",{1,0,1}},{"K",{-1,-1,1}},{"L",{-(1/2),1/2,1}},{"M",{1/2,1/2,1}},{"N",{1,-2,1}},{"O",{-1,1/2,1}}}}}
{{15,12},"BDEFCFGHAEHJBGIJAFIKADGLBHKLABCMCEINDJMNCDKOELMO",{{{"A",{1/2,0,1}},{"B",{1,-1,0}},{"C",{0,1/2,1}},{"D",{1,-2,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{1/2,1/2,1}},{"J",{1,0,1}},{"K",{1/2,-(1/2),1}},{"L",{1,-1,1}},{"M",{3/2,-1,1}},{"N",{3/4,1/2,1}},{"O",{3/4,-1,1}}}}}
{{15,12},"BEFGCDFHABHJACEKBDIKADGLAFIMCGJMEHINBCLNDEJOFKLO",{{{"A",{-1,0,1}},{"B",{1,0,0}},{"C",{0,1,1}},{"D",{0,-1,1}},{"E",{1,1,0}},{"F",{0,1,0}},{"G",{1,-1,0}},{"H",{0,0,1}},{"I",{-1,-1,1}},{"J",{1,0,1}},{"K",{-2,-1,1}},{"L",{-2,1,1}},{"M",{-1,2,1}},{"N",{1,1,1}},{"O",{-2,-3,1}}}}}
{{15,12},"BEFGCDFIADGJACEKBDHKABILAFHMBCJMCGHNDELNEIJOFKLO",{{{"A",{-1,0,1}},{"B",{1,1,0}},{"C",{0,-1,1}},{"D",{0,0,1}},{"E",{1,-1,0}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{-1,-1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{-(1/2),-(1/2),1}},{"L",{-(1/2),1/2,1}},{"M",{-1,-2,1}},{"N",{1,-1,1}},{"O",{-(1/2),3/2,1}}}}}
{{15,12},"BEFHCDGHACFJAHIKDFILBGJLABDMCEIMAEGNBCKNDEJOFGKO",{{{"A",{-1,0,1}},{"B",{1,1,0}},{"C",{0,0,1}},{"D",{0,1,1}},{"E",{1,-1,0}},{"F",{1,0,0}},{"G",{0,-1,1}},{"H",{0,1,0}},{"I",{-1,1,1}},{"J",{1,0,1}},{"K",{-1,-1,1}},{"L",{2,1,1}},{"M",{-(1/2),1/2,1}},{"N",{-(1/2),-(1/2),1}},{"O",{2,-1,1}}}}}
{{15,12},"CDEFBFGIAEGJBEHKACIKAFHLBCJLABDMCGHMDIJNDKLOEMNO",{{{"A",{-1,0,1}},{"B",{0,-1,1}},{"C",{1,1,0}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,0,1}},{"H",{-1,-1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{-2,-1,1}},{"L",{-1,-2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{3/2,-(1/2),1}},{"O",{-(5/2),-(1/2),1}}}}}
{{15,12},"CDEGBDFHEFIJACFKAGHLBCJLADIMBGKMABENCHINDJKOELMO",{{{"A",{1,1,1}},{"B",{0,1,1}},{"C",{1,1,0}},{"D",{0,1,0}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,2,0}},{"H",{0,-1,1}},{"I",{1,0,1}},{"J",{-1,0,1}},{"K",{-1,-1,1}},{"L",{2,3,1}},{"M",{1,3,1}},{"N",{2,1,1}},{"O",{-1,3,1}}}}}
{{15,12},"CEGIAEFJFGHKABIKBDFLACHLADGMBCJMBEHNDIJNCDKOELMO",{{{"A",{0,1/2 (-1-Sqrt),1}},{"B",{1/2 (3+Sqrt),1/2 (3+Sqrt),1}},{"C",{1,1/2 (-1+Sqrt),0}},{"D",{1/2 (-1-Sqrt),1/2 (-1-Sqrt),1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{1/2 (3+Sqrt),0,1}},{"I",{1,1/2 (1+Sqrt),0}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{-2-Sqrt,-2-Sqrt,1}},{"M",{-2-Sqrt,1/2 (-1-Sqrt),1}},{"N",{1/2 (3+Sqrt),3+Sqrt,1}},{"O",{-2-Sqrt,-1-Sqrt,1}}},{{"A",{0,1/2 (-1+Sqrt),1}},{"B",{1/2 (3-Sqrt),1/2 (3-Sqrt),1}},{"C",{1,1/2 (-1-Sqrt),0}},{"D",{1/2 (-1+Sqrt),1/2 (-1+Sqrt),1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{1/2 (3-Sqrt),0,1}},{"I",{1,1/2 (1-Sqrt),0}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{-2+Sqrt,-2+Sqrt,1}},{"M",{-2+Sqrt,1/2 (-1+Sqrt),1}},{"N",{1/2 (3-Sqrt),3-Sqrt,1}},{"O",{-2+Sqrt,-1+Sqrt,1}}}}}
{{15,12},"CEGIDEFJABEKFHIKAFGLBCHLBDGMACJMADHNBIJNCDKOLMNO",{{{"A",{1,1/2 (-1-Sqrt),0}},{"B",{1/2 (1-Sqrt),1,1}},{"C",{0,1,0}},{"D",{1,0,1}},{"E",{0,0,1}},{"F",{1/2 (3-Sqrt),0,1}},{"G",{0,1/2 (-1+Sqrt),1}},{"H",{1/2 (1-Sqrt),1/2 (3+Sqrt),1}},{"I",{0,1,1}},{"J",{1,0,0}},{"K",{1,1/2 (-1-Sqrt),1}},{"L",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"M",{1,1/2 (1-Sqrt),0}},{"N",{1/2 (3-Sqrt),1,1}},{"O",{1,1/2 (-1+Sqrt),1}}},{{"A",{1,1/2 (-1+Sqrt),0}},{"B",{1/2 (1+Sqrt),1,1}},{"C",{0,1,0}},{"D",{1,0,1}},{"E",{0,0,1}},{"F",{1/2 (3+Sqrt),0,1}},{"G",{0,1/2 (-1-Sqrt),1}},{"H",{1/2 (1+Sqrt),1/2 (3-Sqrt),1}},{"I",{0,1,1}},{"J",{1,0,0}},{"K",{1,1/2 (-1+Sqrt),1}},{"L",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"M",{1,1/2 (1+Sqrt),0}},{"N",{1/2 (3+Sqrt),1,1}},{"O",{1,1/2 (-1-Sqrt),1}}}}}
{{15,12},"CFHIDEGJAFGKBEIKBDHLACJLBCGMAEHMADINBFJNCDKOEFLO",{{{"A",{1,0,0}},{"B",{1/2 (3-Sqrt),1/2 (1+Sqrt),1}},{"C",{0,1,0}},{"D",{1,1/2 (3+Sqrt),1}},{"E",{1/2 (-1+Sqrt),1,1}},{"F",{0,0,1}},{"G",{1/2 (3-Sqrt),0,1}},{"H",{0,1,1}},{"I",{0,1/2 (3+Sqrt),1}},{"J",{1,2+Sqrt,0}},{"K",{1,0,1}},{"L",{1,1/2 (1+Sqrt),0}},{"M",{1/2 (3-Sqrt),1,1}},{"N",{1/2 (-1+Sqrt),1/2 (3+Sqrt),1}},{"O",{1,1/2 (1+Sqrt),1}}},{{"A",{1,0,0}},{"B",{1/2 (3+Sqrt),1/2 (1-Sqrt),1}},{"C",{0,1,0}},{"D",{1,1/2 (3-Sqrt),1}},{"E",{1/2 (-1-Sqrt),1,1}},{"F",{0,0,1}},{"G",{1/2 (3+Sqrt),0,1}},{"H",{0,1,1}},{"I",{0,1/2 (3-Sqrt),1}},{"J",{1,2-Sqrt,0}},{"K",{1,0,1}},{"L",{1,1/2 (1-Sqrt),0}},{"M",{1/2 (3+Sqrt),1,1}},{"N",{1/2 (-1-Sqrt),1/2 (3-Sqrt),1}},{"O",{1,1/2 (1-Sqrt),1}}}}}
{{15,12},"DEFHBCFIAFGJBDGKACHKCEGLADILABEMBHJNCDMNEIJOKLMO",{{{"A",{2,1,1}},{"B",{0,0,1}},{"C",{0,-1,1}},{"D",{1,0,0}},{"E",{1,1/2,0}},{"F",{0,1,0}},{"G",{2,0,1}},{"H",{1,1,0}},{"I",{0,1,1}},{"J",{2,2,1}},{"K",{1,0,1}},{"L",{4,1,1}},{"M",{-2,-1,1}},{"N",{-1,-1,1}},{"O",{-8,-3,1}}}}}
{{15,12},"DEGICFHIBFGKAEJKADHLBCJLACGMBEHMABINDFJNCDKOEFLO",{{{"A",{1/2 (-1-Sqrt),1,1}},{"B",{1/2 (-1-Sqrt),0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3+Sqrt),0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1-Sqrt),1}},{"I",{0,1,0}},{"J",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3-Sqrt),1}},{"M",{-2-Sqrt,1,1}},{"N",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"O",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}}},{{"A",{1/2 (-1+Sqrt),1,1}},{"B",{1/2 (-1+Sqrt),0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3-Sqrt),0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1+Sqrt),1}},{"I",{0,1,0}},{"J",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3+Sqrt),1}},{"M",{-2+Sqrt,1,1}},{"N",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"O",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}}}}}
{{15,12},"DEHICFGJAEGKBFHKBGILAHJLBCEMADFMACINBDJNCDKOEFLO",{{{"A",{0,1,1}},{"B",{1/2 (1+Sqrt),0,1}},{"C",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"D",{1,-1,0}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{0,1/2 (3+Sqrt),1}},{"H",{1,0,0}},{"I",{1,1/2 (-1-Sqrt),0}},{"J",{1/2 (-1+Sqrt),1,1}},{"K",{0,0,1}},{"L",{1,1,1}},{"M",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"N",{-1,1/2 (3+Sqrt),1}},{"O",{1,-1,1}}},{{"A",{0,1,1}},{"B",{1/2 (1-Sqrt),0,1}},{"C",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"D",{1,-1,0}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{0,1/2 (3-Sqrt),1}},{"H",{1,0,0}},{"I",{1,1/2 (-1+Sqrt),0}},{"J",{1/2 (-1-Sqrt),1,1}},{"K",{0,0,1}},{"L",{1,1,1}},{"M",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"N",{-1,1/2 (3-Sqrt),1}},{"O",{1,-1,1}}}}}
{{15,12},"DFGIACFJBGHJBCDKAEGKADHLABIMCELMBEFNCHINDEJOFKLO",{{{"A",{0,1,1}},{"B",{-1,0,1}},{"C",{0,-1,1}},{"D",{1,-1,0}},{"E",{-1,1,1}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{1,1,0}},{"J",{0,0,1}},{"K",{-2,1,1}},{"L",{-2,3,1}},{"M",{-(2/3),1/3,1}},{"N",{-1,-2,1}},{"O",{-2,2,1}}}}}
{{15,12},"EFGHADFIBCFJACHKBGIKABELAGJMCDLMBDHNCEINDEJOFKLO",{{{"A",{0,0,1}},{"B",{1,-1,1}},{"C",{1,0,1}},{"D",{0,-1,1}},{"E",{1,-1,0}},{"F",{0,1,0}},{"G",{1,-2,0}},{"H",{1,0,0}},{"I",{0,1,1}},{"J",{1,-2,1}},{"K",{1/2,0,1}},{"L",{1/2,-(1/2),1}},{"M",{1/3,-(2/3),1}},{"N",{2,-1,1}},{"O",{1/2,-(3/2),1}}}}}
{{15,12},"EFGIABGJCFHJBEHKBDFLACKLCDGMAHIMADENBCINDJKOELMO",{{{"A",{0,1,1}},{"B",{0,1/2 (-1-Sqrt),1}},{"C",{1,0,1}},{"D",{1,1/2 (-1-Sqrt),1}},{"E",{1,1/2 (-3-Sqrt),0}},{"F",{1,0,0}},{"G",{0,1,0}},{"H",{1/2 (1-Sqrt),0,1}},{"I",{1,1/2 (1+Sqrt),0}},{"J",{0,0,1}},{"K",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"L",{1/2 (3+Sqrt),1/2 (-1-Sqrt),1}},{"M",{1,1/2 (3+Sqrt),1}},{"N",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"O",{3+Sqrt,-2 (2+Sqrt),1}}},{{"A",{0,1,1}},{"B",{0,1/2 (-1+Sqrt),1}},{"C",{1,0,1}},{"D",{1,1/2 (-1+Sqrt),1}},{"E",{1,1/2 (-3+Sqrt),0}},{"F",{1,0,0}},{"G",{0,1,0}},{"H",{1/2 (1+Sqrt),0,1}},{"I",{1,1/2 (1-Sqrt),0}},{"J",{0,0,1}},{"K",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"L",{1/2 (3-Sqrt),1/2 (-1+Sqrt),1}},{"M",{1,1/2 (3-Sqrt),1}},{"N",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"O",{3-Sqrt,2 (-2+Sqrt),1}}}}}
{{15,12},"FGHIBEGJACHJAEFKCDFLABILADGMBCKMBDHNCEINDJKOELMO",{{{"A",{0,1,1}},{"B",{1,-1,0}},{"C",{0,1/2 (-1-Sqrt),1}},{"D",{-1,1,1}},{"E",{1,1/2 (1+Sqrt),0}},{"F",{1/2 (1-Sqrt),0,1}},{"G",{1,0,0}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (1-Sqrt),1}},{"L",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"M",{1/2 (-3-Sqrt),1,1}},{"N",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"O",{-1,1/2 (5+Sqrt),1}}},{{"A",{0,1,1}},{"B",{1,-1,0}},{"C",{0,1/2 (-1+Sqrt),1}},{"D",{-1,1,1}},{"E",{1,1/2 (1-Sqrt),0}},{"F",{1/2 (1+Sqrt),0,1}},{"G",{1,0,0}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (1+Sqrt),1}},{"L",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"M",{1/2 (-3+Sqrt),1,1}},{"N",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"O",{-1,1/2 (5-Sqrt),1}}}}}

mathe 发表于 2019-10-21 09:51:32

16棵树14行和15行结果还有24组需要分析处理,其中15行为实数解,但是有理数解只有14行
print(ABDHDEFIACFJBEGJBCIKCEHLDJKMBFLMCDGNAEKNFGHOAILOAGMPHINP);
solve([+1/2+1*H_Y,+4+1*O_X,-6+1*P_X,+2+1*L_X,-2+1*O_Y,-2+1*N_X,+1+1*P_Y,-2+1*G_X,-1+1*K_Y,-1+1*N_Y,+1+1*B_Y,-1+1*K_X,-2+1*L_Y,-2+1*I_Y,+1+1*M_Y,+1+1*G_Y,-2+1*C_X,-1+1*M_X],);
print("A=(1,0,0) B=(1,B_y,0) C_y=0 D=(0,1,0) E_x=0 E_y=1 F_x=0 F_y=0 H=(1,H_y,0) I_x=0 J_x=1 J_y=0 ");
print(ABDICFGIBEFJCDHJACELDFKLEHIMBCKMDEGNAJKNAFHOBGLOAGMPBHNP);
solve([-3/2+1*N_X,+1/2+1*K_X,+1+1*L_X,-1/2+1*J_X,-3+1*P_X,+1+1*P_Y,+2+1*O_X,-2+1*O_Y,+1+1*A_Y,-1+1*M_X,-1+1*H_X,+2+1*D_Y,-2+1*L_Y,-2+1*G_Y,-1+1*M_Y,-1+1*K_Y,+1+1*N_Y,+1+1*H_Y],);
print("A=(1,A_y,0) B=(1,0,0) C_x=0 C_y=1 D=(1,D_y,0) E_x=1 E_y=0 F_x=0 F_y=0 G_x=0 I=(0,1,0) J_y=0 ");
print(ABEFACDGEGHIDFJKAHJLAIKMBCLMCFHNBDINBGJOCEKODELPFGMPANOP);
solve([+1-1*P_Y+1*P_Y*P_Y,+1*L_X+1*P_Y,+1+1*P_X-1*P_Y,-1+1*M_Y+1*P_Y,-1+1*F_Y+1*P_Y,+1+1*J_Y-1*P_Y,-1+1*N_Y-1*P_Y,-1+1*M_X,+1*J_X+1*P_Y,+1*H_X+1*P_Y,-1+1*K_Y,-1+1*O_Y,+1*L_Y-1*P_Y,+1*D_Y-1*P_Y,-1+1*K_X,+1*B_Y+1*P_Y,+1+1*N_X-1*P_Y,+1+1*O_X-1*P_Y],);
print("A=(0,1,0) B=(1,B_y,0) C_x=0 C_y=1 D_x=0 E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H_y=0 I_x=1 I_y=0 ");
print(ABEGAFHIBCIJADJKBFKLBDHMACLMCEHNDGINEFJOCGKODELPFGMPANOP);
solve([+1-1*P_Y+1/3*P_Y*P_Y,+2+1*P_X-1*P_Y,-2+1*H_Y+1*P_Y,+1+1*M_Y-1*P_Y,+1+1*D_X-1*P_Y,+2+1*N_X-2*P_Y,-1+1*I_Y,+1+1*C_X-1*P_Y,-1+1*O_X,-1+1*J_X,-1+1*D_Y,-1+1*J_Y,+1+1*L_Y-1*P_Y,+1+1*C_Y-1*P_Y,+2+1*M_X-1*P_Y,+2+1*G_X-1*P_Y,+1*N_Y-1*P_Y,+1*O_Y-1*P_Y],);
print("A=(1,0,0) B_x=0 B_y=0 E_x=1 E_y=0 F=(0,1,0) G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=0 K_y=1 L_x=0 ");
print(ADFHBCGHBDEIACEJBFKLCDKMAILMAGKNEHLNBJMNCFIODGJOEFGPHIJP);
solve([+1-1*P_X+1*P_X*P_X,+1*O_Y-1*O_Y*P_X+1*P_X*P_X,+1+1*M_X-1*P_X,-1+1*P_Y,+1*K_X+1*P_X,+1*O_X+1*O_Y-1*P_X,-1+1*M_Y+1*P_X,+1*N_Y-1*P_X,+1*K_Y-1*P_X,-1+1*L_Y+1*P_X,+1+1*D_Y,-1+1*L_X,-1+1*I_Y+1*P_X,+1*G_Y-1*P_X,+1*F_Y+1*P_X,-1+1*N_X,+1*J_X-1*P_X,+1*I_X-1*P_X],);
print("A=(1,0,0) B_x=0 B_y=1 C_x=0 C_y=0 D=(1,D_y,0) E_x=1 E_y=0 F=(1,F_y,0) G_x=0 H=(0,1,0) J_y=0 ");
print(ADFHBCGHCDIJBFJKAGJLEHKLBDEMAIKMACENBILNCFMODGNOEFGPHIOP);
solve([+1-1/2*P_Y+1/4*P_Y*P_Y,+1+1*J_X-1/2*P_Y,-1+1*M_X+1/2*P_Y,+1+1*A_Y-1/2*P_Y,-2+1*K_Y+1/2*P_Y,-1+1*L_Y-1/2*P_Y,+1*O_Y-1/2*P_Y,+1*F_Y-1/2*P_Y,+1*L_X+1/2*P_Y,-1+1*N_X+1/2*P_Y,+1*K_X+1/2*P_Y,-1+1*E_Y,+1*N_Y-1/2*P_Y,+1*G_Y-1/2*P_Y,+1*E_X+1/2*P_Y,-1+1*M_Y,-1+1*P_X,-1+1*O_X],);
print("A=(1,A_y,0) B_x=0 B_y=1 C_x=0 C_y=0 D=(1,0,0) F=(1,F_y,0) G_x=0 H=(0,1,0) I_x=1 I_y=0 J_y=0 ");
print(ADFIBCGIBFHJAGHKEIJKCDHLBDEMAJLMACENBKLNCFMODGNOEFGPABOP);
solve([+1-1*P_Y+1*P_Y*P_Y,-1+1*N_X-1*P_Y,+1*P_X-1*P_Y,+1*M_Y-1*P_Y,+1+1*L_Y-1*P_Y,+1*N_Y-1*P_Y,+1+1*O_Y-1*P_Y,-1+1*G_Y,+1*H_Y+1*P_Y,-1+1*K_X-1*P_Y,-1+1*M_X,-1+1*K_Y,-1+1*E_X,+1*C_Y-1*P_Y,-1+1*L_X-1*P_Y,-1+1*E_Y,+1*O_X-1*P_Y,+1*A_X-1*P_Y],);
print("A_y=0 B=(0,1,0) C=(1,C_y,0) D_x=1 D_y=0 F_x=0 F_y=0 G=(1,G_y,0) H_x=0 I=(1,0,0) J_x=0 J_y=1 ");
print(AEIJBEGKCFIKDEHLCGJLAFGMBHIMACHNBDJNADKOBFLOCDMPEFNPGHOP);
solve([+1+1*M_Y*P_Y-1*P_Y*P_Y,+1*B_X-1*B_X*K_X-1*B_X*K_Y-1*O_X+1*K_X*O_X+1*O_Y+1*K_X*O_Y-2*P_Y+1*K_X*P_Y+1*K_Y*P_Y+1*M_Y*P_Y-1*P_Y*P_Y,+1*K_X+1/2*O_X-1/2*K_X*O_X-1/2*O_Y-1/2*K_X*O_Y+1*P_Y-1/2*K_X*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*K_X*K_X+1*K_X*K_Y+1*O_X-1*K_X*O_X-1*O_Y-1*K_X*O_Y+2*P_Y-1*K_X*P_Y,+1*K_Y+1/2*O_X-1/2*K_X*O_X-1/2*O_Y-1/2*K_X*O_Y+1*P_Y-1/2*K_X*P_Y-1*K_Y*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*M_Y-1*O_X+1*K_X*O_X+1*O_Y+1*K_X*O_Y-1*P_Y,+1*B_X*M_Y+1*P_Y-1*B_X*P_Y+1*M_Y*P_Y-1*P_Y*P_Y,+1*K_X*M_Y-1/2*O_X+1/2*K_X*O_X+1/2*O_Y+1/2*K_X*O_Y-1/2*K_X*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*K_Y*O_X-1*K_X*O_Y,+1*M_Y*O_X-1*O_Y+1*P_Y-1*O_X*P_Y,-1+1*G_Y+1*K_X+1*K_Y,+1*L_Y-1*M_Y+1*P_Y,-1+1*D_Y,+1*I_X-1*K_X,-1+1*F_Y+1*K_X,-1+1*D_X+1*P_Y,-1+1*M_X+1*P_Y,+1*F_X-1*K_X,-1+1*P_X+1*P_Y,-1+1*B_Y,+1*H_Y+1*M_Y-1*P_Y],);
print("A_x=0 A_y=0 C=(0,1,0) E_x=1 E_y=0 G=(1,G_y,0) H_x=0 I_y=0 J=(1,0,0) L=(1,L_y,0) N_x=0 N_y=1 ");
print(BCEGAFGHBDHIAEIJACDLBFJLABKMCHKNDEMNCFIODGJOEFKPGLMPANOP);
solve([+1-1/2*P_Y+1/4*P_Y*P_Y,+1*N_Y+1/2*P_Y,+1*P_X+1/2*P_Y,-1+1*N_X,+1+1*O_Y-1/2*P_Y,-1+1*O_X+1/2*P_Y,+1*L_Y-1/2*P_Y,+1+1*K_X-1/2*P_Y,+1*C_Y+1/2*P_Y,+1*J_Y-1/2*P_Y,-1+1*J_X+1/2*P_Y,-1+1*D_X+1/2*P_Y,+1*F_Y-1/2*P_Y,+1+1*E_Y,+1*M_X+1/2*P_Y,+1*L_X+1/2*P_Y,-1+1*K_Y,-1+1*M_Y],);
print("A_x=0 A_y=1 B=(1,0,0) C=(1,C_y,0) D_y=0 E=(1,E_y,0) F_x=0 G=(0,1,0) H_x=0 H_y=0 I_x=1 I_y=0 ");
print(BCGIADHIDFGKBEJKCEHLAFJLEFIMCDJMACKNBDLNAEGOBFHOABMPGHNP);
solve([+1+1*P_Y-1*P_Y*P_Y,+1*O_X-2*P_Y+1*O_X*P_Y+1*P_Y*P_Y,+1*P_X+2*P_Y+1*P_X*P_Y-1*P_Y*P_Y,-1+1*L_Y-1*P_Y,+1*J_Y+1*P_Y,+1*J_X-1*P_Y,-1+1*M_Y+1*P_Y,+1+1*B_Y+1*P_Y,-1+1*N_X+1*P_Y,+1+1*M_X-1*P_Y,+1+1*L_X,-1+1*O_Y,+1+1*F_X-1*P_Y,+1+1*E_X-1*P_Y,+1+1*C_Y,-1+1*E_Y,+1*N_Y-1*P_Y,+1*H_Y-1*P_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) C=(1,C_y,0) D_x=0 D_y=0 F_y=0 G=(1,0,0) H_x=0 I=(0,1,0) K_x=1 K_y=0 ");
print(BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNP);
solve([+1+4*P_Y-1*P_Y*P_Y,+3/2+1*J_Y-1/2*P_Y,-1/2+1*P_X+1/2*P_Y,+1/2+1*O_Y+1/2*P_Y,+1+1*L_Y,-1/2+1*M_Y-1/2*P_Y,-3/2+1*H_Y+1/2*P_Y,+1/2+1*N_Y-1/2*P_Y,-1/2+1*O_X-1/2*P_Y,-1+1*N_X,+1+1*C_Y,-1+1*J_X,-1/2+1*L_X-1/2*P_Y,-1/2+1*D_X-1/2*P_Y,-1/2+1*M_X+1/2*P_Y,-1/2+1*A_X+1/2*P_Y,+1/2+1*E_Y-1/2*P_Y,+1/2+1*A_Y-1/2*P_Y],);
print("B=(0,1,0) C=(1,C_y,0) D_y=0 E_x=0 F_x=1 F_y=0 G_x=0 G_y=1 H=(1,H_y,0) I=(1,0,0) K_x=0 K_y=0 ");
print(BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNPEFOP);
solve([+1-3*P_Y+1*P_Y*P_Y,-3+1*J_Y+1*P_Y,-2+1*L_Y+1*P_Y,+1+1*M_Y-1*P_Y,+3+1*H_Y-1*P_Y,+2+1*G_Y-1*P_Y,-1+1*O_Y+1*P_Y,-1+1*J_X,-1+1*N_Y,-1+1*N_X,+1*L_X-1*P_Y,+1*D_X-1*P_Y,-1+1*M_X+1*P_Y,-1+1*A_X+1*P_Y,-2+1*C_Y+1*P_Y,-1+1*A_Y,-1+1*P_X+1*P_Y,+1*O_X-1*P_Y],);
print("B=(0,1,0) C=(1,C_y,0) D_y=0 E_x=0 E_y=1 F_x=1 F_y=0 G_x=0 H=(1,H_y,0) I=(1,0,0) K_x=0 K_y=0 ");
print(BEFHACEIBDGIADHJCDFKEGJKCGHLFIJLABKLBCMNDEMOAFNOAGMPHINPBJOP);
solve([+1-1*P_Y+1*P_Y*P_Y,-1+1*L_X+1*P_Y,+1+1*N_X,+1*F_Y-1*P_Y,+1*O_X-1*P_Y,-1+1*K_Y,-1+1*N_Y+1*P_Y,+1+1*H_Y-1*P_Y,-1+1*M_Y+1*P_Y,+1*D_X-1*P_Y,-1+1*C_Y+1*P_Y,-1+1*K_X,+1*M_X-1*P_Y,-1+1*P_X+1*P_Y,-1+1*J_X,-1+1*L_Y,+1*J_Y-1*P_Y,+1*O_Y-1*P_Y],);
print("A_x=0 A_y=1 B=(1,0,0) C_x=0 D_y=0 E=(0,1,0) F=(1,F_y,0) G_x=1 G_y=0 H=(1,H_y,0) I_x=0 I_y=0 ");
print(CDEFBEGHBFIJCGIKDHJKAFGLACHMADINBCLNAEJOBDMOABKPELMPFNOP);
solve([+1-1*P_Y-1*P_Y*P_Y,+1*I_X+1*P_Y,-1+1*N_X+1*P_Y,+1+1*K_Y+1*P_Y,-1+1*M_Y+1*P_Y,-1+1*C_Y-1*P_Y,+1+1*K_X+1*P_Y,+1*H_Y+1*P_Y,+1*P_X-1*P_Y,-1+1*O_X,-1+1*L_Y,+1*D_Y-1*P_Y,-1+1*A_Y,-1+1*A_X,+1*L_X-1*P_Y,+1*M_X-1*P_Y,+1*N_Y-1*P_Y,+1*O_Y-1*P_Y],);
print("B_x=0 B_y=0 C=(1,C_y,0) D=(1,D_y,0) E=(0,1,0) F=(1,0,0) G_x=0 G_y=1 H_x=0 I_y=0 J_x=1 J_y=0 ");
print(CDFGCEHJBDIJBFHKEGIKADHLABGMAEFNBCLNACIODEMOAJKPFLMPGNOP);
solve([+1-3/2*P_Y+1/4*P_Y*P_Y,+1*K_Y-1/2*P_Y,+1*P_X-1*P_Y,-1+1*O_X+1/2*P_Y,+1*K_X-1/2*P_Y,+1*M_X-1/2*P_Y,+1*N_Y-1/2*P_Y,-1+1*L_Y+1/2*P_Y,+2+1*G_Y-1/2*P_Y,-1+1*I_X+1/2*P_Y,-1+1*M_Y,-1+1*O_Y,-1+1*A_Y+1/2*P_Y,-1+1*A_X+1/2*P_Y,+1+1*F_Y-1/2*P_Y,-1+1*H_Y+1/2*P_Y,-1+1*N_X,-1+1*L_X],);
print("B_x=1 B_y=0 C=(0,1,0) D=(1,0,0) E_x=0 E_y=1 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_y=0 J_x=0 J_y=0 ");
print(CDFJDEHKCGIKBFHLADILBDGMAEJMBCENAFGNACHOBIJOABKPCLMPDNOP);
solve([+1-1*P_Y+1/3*P_Y*P_Y,+1+1*L_X-1*P_Y,+1+1*O_Y-1*P_Y,-2+1*F_Y+1*P_Y,+1+1*J_Y-1*P_Y,+1*P_X-1*P_Y,+1+1*I_X-1*P_Y,-1+1*B_X,+1+1*A_Y-1*P_Y,+1+1*H_Y-1*P_Y,+1+1*A_X-1*P_Y,-1+1*M_X,-1+1*B_Y,-1+1*N_Y,+1*M_Y-1*P_Y,+1*L_Y-1*P_Y,+1*N_X-1*P_Y,+1*O_X-1*P_Y],);
print("C=(1,0,0) D=(0,1,0) E_x=0 E_y=1 F=(1,F_y,0) G_x=1 G_y=0 H_x=0 I_y=0 J=(1,J_y,0) K_x=0 K_y=0 ");
print(CDHICEFJABHJBEGKAGILDFKLBFIMACKMADENBCLNDGJOEHMOFGHPIJNP);
solve([+1+3*O_Y+1*O_Y*O_Y,+1*M_Y+1*O_Y,+1+1*K_X,+1+1*O_X+1*O_Y,+2+1*L_X+1*O_Y,-1+1*M_X-1*O_Y,-1+1*E_Y-1*O_Y,-1+1*G_Y-1*O_Y,+1+1*P_Y,-1+1*L_Y,+1+1*G_X+1*O_Y,+1+1*D_X+1*O_Y,+1*K_Y+1*O_Y,+1+1*F_Y,+1*A_Y+1*O_Y,-1+1*N_Y,-1+1*N_X,-1+1*P_X],);
print("A_x=0 B_x=0 B_y=1 C=(1,0,0) D_y=0 E=(1,E_y,0) F=(1,F_y,0) H_x=0 H_y=0 I_x=1 I_y=0 J=(0,1,0) ");
print(CEFHABEICDGIBDFJBGHKACJKADHLEGJLFIKLBCMNDEMOAFNOAGMPHINP);
solve([+1+1*P_Y+1*O_Y*P_Y,+1*O_Y+1*O_Y*O_Y-1*P_Y-1*O_Y*P_Y,+1*P_X+1*O_Y*P_X+1*P_Y,+1*L_Y-1*O_Y,+1*N_X-1*O_Y,+1*L_X+1*O_Y,-1+1*K_Y-1*O_Y,+1+1*K_X+1*O_Y,-1+1*N_Y,-1+1*M_Y,-1+1*O_X,-1+1*M_X,-1+1*J_Y-1*O_Y,+1*J_X+1*O_Y,+1+1*F_Y,+1+1*H_Y+1*O_Y,-1+1*A_Y-1*O_Y,+1*G_X+1*O_Y],);
print("A_x=0 B_x=0 B_y=1 C=(1,0,0) D_x=1 D_y=0 E=(0,1,0) F=(1,F_y,0) G_y=0 H=(1,H_y,0) I_x=0 I_y=0 ");
print(CFHIDEGJAEIKBFJKBGILAHJLBCEMADFMACGNBDHNCDKOEFLOGHMPIJNP);
solve([+1-3*P_Y+1*P_Y*P_Y,+1+1*O_Y,+4+1*O_X-2*P_Y,-3+1*B_X+1*P_Y,+2+1*M_Y-1*P_Y,+2+1*M_X-1*P_Y,-1+1*K_Y+2*P_Y,+1+1*D_Y-1*P_Y,-1+1*E_Y+1*P_Y,+1*P_X-1*P_Y,-1+1*G_Y,+2+1*F_X-1*P_Y,-1+1*B_Y,-1+1*N_X,-1+1*G_X,+2+1*D_X-1*P_Y,+1*N_Y-1*P_Y,+1*J_Y-1*P_Y],);
print("A=(0,1,0) C_x=1 C_y=0 E=(1,E_y,0) F_y=0 H_x=0 H_y=0 I=(1,0,0) J_x=0 K=(1,K_y,0) L_x=0 L_y=1 ");
print(DEFICGHIBCFJADHJACEKBDGKABILEGJLFHKLCDMNBEMOAFNOAGMPBHNP);
solve([+1-2*P_X+4*P_X*P_X,+1*O_Y+2*P_X-2*O_Y*P_X,-1/2+1*P_Y,+1*N_Y-2*P_X,-1+1*L_Y+2*P_X,-1+1*M_X,+1+1*N_X-2*P_X,-1+1*O_X+1*O_Y-2*P_X,+1+1*K_X-2*P_X,+1*L_X-2*P_X,-1+1*B_Y,+1+1*E_Y,+1*F_Y+2*P_X,+1*B_X-2*P_X,+1*M_Y-2*P_X,+1*A_X-2*P_X,+1*C_Y-2*P_X,-1+1*K_Y],);
print("A_y=0 C_x=0 D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 G_y=1 H_x=0 H_y=0 I=(0,1,0) J_x=1 J_y=0 ");
print(DEGICFGJAHIJBDFKABGLCDHLBEHMACKMBCINEJKNFLMOADNOAEFPGHOP);
solve([+1+3*O_Y+1*O_Y*O_Y,+2+1*M_Y+1*O_Y,-2+1*M_X-1*O_Y,-3+1*K_Y-1*O_Y,+1+1*K_X,-2+1*F_Y-1*O_Y,+1*L_Y+1*O_Y,+1+1*P_Y,+1*N_X-1*O_Y,-1+1*L_X-1*O_Y,+3+1*E_Y+1*O_Y,-1+1*N_Y,+1+1*D_Y,-1+1*B_Y,-1+1*B_X-1*O_Y,-1+1*A_X-1*O_Y,-1+1*P_X,-1+1*O_X],);
print("A_y=0 C_x=0 C_y=1 D=(1,D_y,0) E=(1,E_y,0) F_x=0 G=(0,1,0) H_x=1 H_y=0 I=(1,0,0) J_x=0 J_y=0 ");
print(DFGICEHJBEIKAFJKBCGLADHLACIMBDJMAEGNBFHNCDKOEFLOGHMPIJNP);
solve([+1+1*P_Y-1*P_Y*P_Y,+1*P_X+2*P_Y+1*P_X*P_Y-1*P_Y*P_Y,-1+1*H_Y-1*P_Y,+1*L_Y+1*P_Y,+1*M_X+1*P_X,-1+1*O_Y+1*P_Y,+1+1*B_Y+1*P_Y,+1+1*H_X,-1+1*N_X+1*P_Y,+1+1*O_X-1*P_Y,+1*L_X-1*P_Y,+1+1*C_X-1*P_Y,-1+1*M_Y,-1+1*C_Y,+1+1*D_X-1*P_Y,+1+1*E_Y,+1*N_Y-1*P_Y,+1*J_Y-1*P_Y],);
print("A_x=0 A_y=1 B=(1,B_y,0) D_y=0 E=(1,E_y,0) F_x=0 F_y=0 G_x=1 G_y=0 I=(1,0,0) J_x=0 K=(0,1,0) ");
print(DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP);
solve([+1-7*P_Y+1*P_Y*P_Y,+1*N_X+21*P_Y+1*N_X*P_Y-3*P_Y*P_Y,+1+1*L_X,-1/3+1*O_Y-1/3*P_Y,+1/3+1*M_Y-2/3*P_Y,-5/3+1*M_X+1/3*P_Y,+2/3+1*G_Y-1/3*P_Y,-1+1*L_Y,-2/3+1*H_X+1/3*P_Y,-1+1*N_Y,-1/3+1*H_Y-1/3*P_Y,+1/3+1*D_Y+1/3*P_Y,-1/3+1*B_Y-1/3*P_Y,+2/3+1*C_Y-1/3*P_Y,-5/3+1*C_X+1/3*P_Y,-5/3+1*A_X+1/3*P_Y,-1+1*O_X,-1+1*P_X],);
print("A_y=0 B_x=0 D=(1,D_y,0) E_x=0 E_y=1 F=(1,0,0) G=(1,G_y,0) I=(0,1,0) J_x=1 J_y=0 K_x=0 K_y=0 ");
print(EFHIADIJDFGKABHKACGLBEJLBGIMCFJMCEKNDHLNBCDOAEMOAFNPGHOP);
solve([+1+1*P_Y*P_Y,-1+1*O_Y-1*P_Y,-1/2+1*B_X+1/2*P_Y,-1/2+1*L_X,-1/2+1*P_X-1/2*P_Y,-1/2+1*O_X,+1*M_Y-2*P_Y,+1+1*K_Y-1*P_Y,-2+1*E_Y,+1*G_Y-2*P_Y,-1+1*C_Y-1*P_Y,-1+1*B_Y-1*P_Y,-1+1*C_X,-1+1*M_X,-1/2+1*N_X-1/2*P_Y,-1/2+1*A_X-1/2*P_Y,-1+1*N_Y,-1+1*L_Y],);
print("A_y=0 D=(1,0,0) E_x=0 F=(0,1,0) G=(1,G_y,0) H_x=0 H_y=1 I_x=0 I_y=0 J_x=1 J_y=0 K=(1,K_y,0) ");



===========
wayne实数解:
{{16,14},"ABDHDEFIACFJBEGJBCIKCEHLDJKMBFLMCDGNAEKNFGHOAILOAGMPHINP",{{{"A",{1,0,0}},{"B",{1,-1,0}},{"C",{2,0,1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{0,0,1}},{"G",{2,-1,1}},{"H",{1,-(1/2),0}},{"I",{0,2,1}},{"J",{1,0,1}},{"K",{1,1,1}},{"L",{-2,2,1}},{"M",{1,-1,1}},{"N",{2,1,1}},{"O",{-4,2,1}},{"P",{6,-1,1}}}}}
{{16,14},"ABDICFGIBEFJCDHJACELDFKLEHIMBCKMDEGNAJKNAFHOBGLOAGMPBHNP",{{{"A",{1,-1,0}},{"B",{1,0,0}},{"C",{0,1,1}},{"D",{1,-2,0}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,2,1}},{"H",{1,-1,1}},{"I",{0,1,0}},{"J",{1/2,0,1}},{"K",{-(1/2),1,1}},{"L",{-1,2,1}},{"M",{1,1,1}},{"N",{3/2,-1,1}},{"O",{-2,2,1}},{"P",{3,-1,1}}}}}
{{16,14},"AEIJBEGKCFIKDEHLCGJLAFGMBHIMACHNBDJNADKOBFLOCDMPEFNPGHOP",{{{"A",{0,0,1}},{"B",{1+Root,1,1}},{"C",{0,1,0}},{"D",{Root,1,1}},{"E",{1,0,1}},{"F",{Root,Root[-1+2 #1-3 #1^2+#1^3&,1,0],1}},{"G",{1,Root,0}},{"H",{0,Root[-1+#1^2+#1^3&,1,0],1}},{"I",{Root,0,1}},{"J",{1,0,0}},{"K",{Root,Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"L",{1,Root,0}},{"M",{Root,Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"N",{0,1,1}},{"O",{Root,Root[-1+#1-2 #1^2+#1^3&,1,0],1}},{"P",{Root,Root[-1-#1+#1^3&,1,0],1}}}}}
{{16,14},"BCGIADHIDFGKBEJKCEHLAFJLEFIMCDJMACKNBDLNAEGOBFHOABMPGHNP",{{{"A",{0,1,1}},{"B",{1,1/2 (-3+Sqrt),0}},{"C",{1,-1,0}},{"D",{0,0,1}},{"E",{1/2 (-1-Sqrt),1,1}},{"F",{1/2 (-1-Sqrt),0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1-Sqrt),1}},{"I",{0,1,0}},{"J",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3-Sqrt),1}},{"M",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"N",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"O",{-2-Sqrt,1,1}},{"P",{2+Sqrt,1/2 (1-Sqrt),1}}},{{"A",{0,1,1}},{"B",{1,1/2 (-3-Sqrt),0}},{"C",{1,-1,0}},{"D",{0,0,1}},{"E",{1/2 (-1+Sqrt),1,1}},{"F",{1/2 (-1+Sqrt),0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1+Sqrt),1}},{"I",{0,1,0}},{"J",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3+Sqrt),1}},{"M",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"N",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"O",{-2+Sqrt,1,1}},{"P",{2-Sqrt,1/2 (1+Sqrt),1}}}}}
{{16,14},"BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNP",{{{"A",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"B",{0,1,0}},{"C",{1,-1,0}},{"D",{1/2 (3-Sqrt),0,1}},{"E",{0,1/2 (1-Sqrt),1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{1,1/2 (1+Sqrt),0}},{"I",{1,0,0}},{"J",{1,1/2 (-1-Sqrt),1}},{"K",{0,0,1}},{"L",{1/2 (3-Sqrt),-1,1}},{"M",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"N",{1,1/2 (1-Sqrt),1}},{"O",{1/2 (3-Sqrt),1/2 (-3+Sqrt),1}},{"P",{1/2 (-1+Sqrt),2-Sqrt,1}}},{{"A",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"B",{0,1,0}},{"C",{1,-1,0}},{"D",{1/2 (3+Sqrt),0,1}},{"E",{0,1/2 (1+Sqrt),1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{1,1/2 (1-Sqrt),0}},{"I",{1,0,0}},{"J",{1,1/2 (-1+Sqrt),1}},{"K",{0,0,1}},{"L",{1/2 (3+Sqrt),-1,1}},{"M",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"N",{1,1/2 (1+Sqrt),1}},{"O",{1/2 (3+Sqrt),1/2 (-3-Sqrt),1}},{"P",{1/2 (-1-Sqrt),2+Sqrt,1}}}}}
{{16,15},"BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNPEFOP",{{{"A",{1/2 (-1+Sqrt),1,1}},{"B",{0,1,0}},{"C",{1,1/2 (1+Sqrt),0}},{"D",{1/2 (3-Sqrt),0,1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{0,1/2 (-1-Sqrt),1}},{"H",{1,1/2 (-3-Sqrt),0}},{"I",{1,0,0}},{"J",{1,1/2 (3+Sqrt),1}},{"K",{0,0,1}},{"L",{1/2 (3-Sqrt),1/2 (1+Sqrt),1}},{"M",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"N",{1,1,1}},{"O",{1/2 (3-Sqrt),1/2 (-1+Sqrt),1}},{"P",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}}},{{"A",{1/2 (-1-Sqrt),1,1}},{"B",{0,1,0}},{"C",{1,1/2 (1-Sqrt),0}},{"D",{1/2 (3+Sqrt),0,1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{0,1/2 (-1+Sqrt),1}},{"H",{1,1/2 (-3+Sqrt),0}},{"I",{1,0,0}},{"J",{1,1/2 (3-Sqrt),1}},{"K",{0,0,1}},{"L",{1/2 (3+Sqrt),1/2 (1-Sqrt),1}},{"M",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"N",{1,1,1}},{"O",{1/2 (3+Sqrt),1/2 (-1-Sqrt),1}},{"P",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}}}}}
{{16,14},"CDEFBEGHBFIJCGIKDHJKAFGLACHMADINBCLNAEJOBDMOABKPELMPFNOP",{{{"A",{1,1,1}},{"B",{0,0,1}},{"C",{1,1/2 (1-Sqrt),0}},{"D",{1,1/2 (-1-Sqrt),0}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{0,1,1}},{"H",{0,1/2 (1+Sqrt),1}},{"I",{1/2 (1+Sqrt),0,1}},{"J",{1,0,1}},{"K",{1/2 (-1+Sqrt),1/2 (-1+Sqrt),1}},{"L",{1/2 (-1-Sqrt),1,1}},{"M",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"N",{1/2 (3+Sqrt),1/2 (-1-Sqrt),1}},{"O",{1,1/2 (-1-Sqrt),1}},{"P",{1/2 (-1-Sqrt),1/2 (-1-Sqrt),1}}},{{"A",{1,1,1}},{"B",{0,0,1}},{"C",{1,1/2 (1+Sqrt),0}},{"D",{1,1/2 (-1+Sqrt),0}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{0,1,1}},{"H",{0,1/2 (1-Sqrt),1}},{"I",{1/2 (1-Sqrt),0,1}},{"J",{1,0,1}},{"K",{1/2 (-1-Sqrt),1/2 (-1-Sqrt),1}},{"L",{1/2 (-1+Sqrt),1,1}},{"M",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"N",{1/2 (3-Sqrt),1/2 (-1+Sqrt),1}},{"O",{1,1/2 (-1+Sqrt),1}},{"P",{1/2 (-1+Sqrt),1/2 (-1+Sqrt),1}}}}}
{{16,14},"CDFGCEHJBDIJBFHKEGIKADHLABGMAEFNBCLNACIODEMOAJKPFLMPGNOP",{{{"A",{1/2 (-1-Sqrt),1/2 (-1-Sqrt),1}},{"B",{1,0,1}},{"C",{0,1,0}},{"D",{1,0,0}},{"E",{0,1,1}},{"F",{1,1/2 (1+Sqrt),0}},{"G",{1,1/2 (-1+Sqrt),0}},{"H",{0,1/2 (-1-Sqrt),1}},{"I",{1/2 (-1-Sqrt),0,1}},{"J",{0,0,1}},{"K",{1/2 (3+Sqrt),1/2 (3+Sqrt),1}},{"L",{1,1/2 (-1-Sqrt),1}},{"M",{1/2 (3+Sqrt),1,1}},{"N",{1,1/2 (3+Sqrt),1}},{"O",{1/2 (-1-Sqrt),1,1}},{"P",{3+Sqrt,3+Sqrt,1}}},{{"A",{1/2 (-1+Sqrt),1/2 (-1+Sqrt),1}},{"B",{1,0,1}},{"C",{0,1,0}},{"D",{1,0,0}},{"E",{0,1,1}},{"F",{1,1/2 (1-Sqrt),0}},{"G",{1,1/2 (-1-Sqrt),0}},{"H",{0,1/2 (-1+Sqrt),1}},{"I",{1/2 (-1+Sqrt),0,1}},{"J",{0,0,1}},{"K",{1/2 (3-Sqrt),1/2 (3-Sqrt),1}},{"L",{1,1/2 (-1+Sqrt),1}},{"M",{1/2 (3-Sqrt),1,1}},{"N",{1,1/2 (3-Sqrt),1}},{"O",{1/2 (-1+Sqrt),1,1}},{"P",{3-Sqrt,3-Sqrt,1}}}}}
{{16,14},"CDHICEFJABHJBEGKAGILDFKLBFIMACKMADENBCLNDGJOEHMOFGHPIJNP",{{{"A",{0,1/2 (3-Sqrt),1}},{"B",{0,1,1}},{"C",{1,0,0}},{"D",{1/2 (1-Sqrt),0,1}},{"E",{1,1/2 (-1+Sqrt),0}},{"F",{1,-1,0}},{"G",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (3-Sqrt),1}},{"L",{1/2 (-1-Sqrt),1,1}},{"M",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"N",{1,1,1}},{"O",{1/2 (1-Sqrt),1/2 (-3+Sqrt),1}},{"P",{1,-1,1}}},{{"A",{0,1/2 (3+Sqrt),1}},{"B",{0,1,1}},{"C",{1,0,0}},{"D",{1/2 (1+Sqrt),0,1}},{"E",{1,1/2 (-1-Sqrt),0}},{"F",{1,-1,0}},{"G",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (3+Sqrt),1}},{"L",{1/2 (-1+Sqrt),1,1}},{"M",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"N",{1,1,1}},{"O",{1/2 (1+Sqrt),1/2 (-3-Sqrt),1}},{"P",{1,-1,1}}}}}
{{16,14},"CFHIDEGJAEIKBFJKBGILAHJLBCEMADFMACGNBDHNCDKOEFLOGHMPIJNP",{{{"A",{0,1,0}},{"B",{1/2 (3+Sqrt),1,1}},{"C",{1,0,1}},{"D",{1/2 (-1-Sqrt),1/2 (1-Sqrt),1}},{"E",{1,1/2 (-1+Sqrt),0}},{"F",{1/2 (-1-Sqrt),0,1}},{"G",{1,1,1}},{"H",{0,0,1}},{"I",{1,0,0}},{"J",{0,1/2 (3-Sqrt),1}},{"K",{1,-2+Sqrt,0}},{"L",{0,1,1}},{"M",{1/2 (-1-Sqrt),1/2 (-1-Sqrt),1}},{"N",{1,1/2 (3-Sqrt),1}},{"O",{-1-Sqrt,-1,1}},{"P",{1/2 (3-Sqrt),1/2 (3-Sqrt),1}}},{{"A",{0,1,0}},{"B",{1/2 (3-Sqrt),1,1}},{"C",{1,0,1}},{"D",{1/2 (-1+Sqrt),1/2 (1+Sqrt),1}},{"E",{1,1/2 (-1-Sqrt),0}},{"F",{1/2 (-1+Sqrt),0,1}},{"G",{1,1,1}},{"H",{0,0,1}},{"I",{1,0,0}},{"J",{0,1/2 (3+Sqrt),1}},{"K",{1,-2-Sqrt,0}},{"L",{0,1,1}},{"M",{1/2 (-1+Sqrt),1/2 (-1+Sqrt),1}},{"N",{1,1/2 (3+Sqrt),1}},{"O",{-1+Sqrt,-1,1}},{"P",{1/2 (3+Sqrt),1/2 (3+Sqrt),1}}}}}
{{16,14},"DEGICFGJAHIJBDFKABGLCDHLBEHMACKMBCINEJKNFLMOADNOAEFPGHOP",{{{"A",{1/2 (-1-Sqrt),0,1}},{"B",{1/2 (-1-Sqrt),1,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3+Sqrt),0}},{"F",{0,1/2 (1-Sqrt),1}},{"G",{0,1,0}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{0,0,1}},{"K",{-1,1/2 (3-Sqrt),1}},{"L",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"M",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"N",{1/2 (-3-Sqrt),1,1}},{"O",{1,1/2 (-3-Sqrt),1}},{"P",{1,-1,1}}},{{"A",{1/2 (-1+Sqrt),0,1}},{"B",{1/2 (-1+Sqrt),1,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3-Sqrt),0}},{"F",{0,1/2 (1+Sqrt),1}},{"G",{0,1,0}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{0,0,1}},{"K",{-1,1/2 (3+Sqrt),1}},{"L",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"M",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"N",{1/2 (-3+Sqrt),1,1}},{"O",{1,1/2 (-3+Sqrt),1}},{"P",{1,-1,1}}}}}
{{16,14},"DFGICEHJBEIKAFJKBCGLADHLACIMBDJMAEGNBFHNCDKOEFLOGHMPIJNP",{{{"A",{0,1,1}},{"B",{1,1/2 (-3+Sqrt),0}},{"C",{1/2 (-1-Sqrt),1,1}},{"D",{1/2 (-1-Sqrt),0,1}},{"E",{1,-1,0}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{-1,1/2 (3-Sqrt),1}},{"I",{1,0,0}},{"J",{0,1/2 (1-Sqrt),1}},{"K",{0,1,0}},{"L",{1/2 (1-Sqrt),1/2 (-1+Sqrt),1}},{"M",{-2-Sqrt,1,1}},{"N",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"O",{1/2 (-1-Sqrt),1/2 (1+Sqrt),1}},{"P",{2+Sqrt,1/2 (1-Sqrt),1}}},{{"A",{0,1,1}},{"B",{1,1/2 (-3-Sqrt),0}},{"C",{1/2 (-1+Sqrt),1,1}},{"D",{1/2 (-1+Sqrt),0,1}},{"E",{1,-1,0}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{-1,1/2 (3+Sqrt),1}},{"I",{1,0,0}},{"J",{0,1/2 (1+Sqrt),1}},{"K",{0,1,0}},{"L",{1/2 (1+Sqrt),1/2 (-1-Sqrt),1}},{"M",{-2+Sqrt,1,1}},{"N",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"O",{1/2 (-1+Sqrt),1/2 (1-Sqrt),1}},{"P",{2-Sqrt,1/2 (1+Sqrt),1}}}}}
{{16,15},"DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP",{{{"A",{1/2 (1-Sqrt),0,1}},{"B",{0,1/2 (3+Sqrt),1}},{"C",{1/2 (1-Sqrt),1/2 (1+Sqrt),1}},{"D",{1,1/2 (-3-Sqrt),0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,1/2 (1+Sqrt),0}},{"H",{1/2 (-1-Sqrt),1/2 (3+Sqrt),1}},{"I",{0,1,0}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{-1,1,1}},{"M",{1/2 (1-Sqrt),2+Sqrt,1}},{"N",{1/2 (-3+Sqrt),1,1}},{"O",{1,1/2 (3+Sqrt),1}},{"P",{1,1/2 (7+3 Sqrt),1}}},{{"A",{1/2 (1+Sqrt),0,1}},{"B",{0,1/2 (3-Sqrt),1}},{"C",{1/2 (1+Sqrt),1/2 (1-Sqrt),1}},{"D",{1,1/2 (-3+Sqrt),0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,1/2 (1-Sqrt),0}},{"H",{1/2 (-1+Sqrt),1/2 (3-Sqrt),1}},{"I",{0,1,0}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{-1,1,1}},{"M",{1/2 (1+Sqrt),2-Sqrt,1}},{"N",{1/2 (-3-Sqrt),1,1}},{"O",{1,1/2 (3-Sqrt),1}},{"P",{1,1/2 (7-3 Sqrt),1}}}}}
页: 55 56 57 58 59 60 61 62 63 64 [65] 66 67 68 69 70 71 72 73
查看完整版本: 果树问题讨论:这两个问题等价么?