跪求大神指点
已知R^2=a^3/(3a-n),怎样用R、n的表达式表示a {{a -> -((2^(1/3) R^2)/(n R^2 + Sqrt)^(1/3)) - (n R^2 + Sqrt)^(1/3)/2^(
1/3)}, {a -> ((1 + I Sqrt) R^2)/(
2^(2/3) (n R^2 + Sqrt)^(
1/3)) + ((1 - I Sqrt) (n R^2 + Sqrt)^(1/3))/(
2 2^(1/3))}, {a -> ((1 - I Sqrt) R^2)/(
2^(2/3) (n R^2 + Sqrt)^(
1/3)) + ((1 + I Sqrt) (n R^2 + Sqrt)^(1/3))/(
2 2^(1/3))}}
拿去吧,如果你解不出三次方程,就别想着搞个大猜想什么之类的 本帖最后由 mathematica 于 2016-1-12 15:20 编辑
\[ - \frac{{{2^{1/3}}{R^2}}}{{{{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}} - \frac{{{{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}}{{{2^{1/3}}}}\]
\[\frac{{(1 + {\rm{i}}\sqrt 3 ){R^2}}}{{{2^{2/3}}{{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}} + \frac{{(1 - {\rm{i}}\sqrt 3 ){{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}}{{{{22}^{1/3}}}}\]
\[\frac{{(1 - {\rm{i}}\sqrt 3 ){R^2}}}{{{2^{2/3}}{{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}} + \frac{{(1 + {\rm{i}}\sqrt 3 ){{(n{R^2} + \sqrt {{n^2}{R^4} - 4{R^6}} )}^{1/3}}}}{{{{22}^{1/3}}}}\]
页:
[1]