而且使用代入法消去一个元`a_{20}`的方法得到的19阶矩阵,使对称度受损。用拉格朗日乘数法可更好地保持对称度,便于一般化。
用拉格朗日乘数法得到的矩阵如下 ( 其中 `a=4n-6,b=1-2n`):\[ A =\frac1{4(n-1)\sqrt{n-1}}\ \begin{pmatrix}a&b&&&&b\\b&a&b\\&b&a&b\\&&\ddots&\ddots&\ddots\\&&&b&a&b\\b&&&&b&a\end{pmatrix}_{n \times n } \]这个矩阵有一个恒定特征值`-4(=a+2b)`(意味着什么呢?)。在n<20时,没有其它负特征值,在n=20时出现了两个很小的负特征值。
{152, 148.182, 148.182, 137.103, 137.103, 119.847, 119.847, 98.1033, 98.1033, 74, 74, 49.8967, 49.8967, 28.1528, 28.1528, 10.8967, 10.8967, -4, -0.182408, -0.182408}
-4的意味
说明一下,出于两个方面的考虑,我将坐标系缩放了`\sqrt n`倍,于是约束“球面”变成了\不等式变成了\[\sqrt{n-a_1a_2}+\sqrt{n-a_2a_3}+\sqrt{1-a_3a_4}+\ldots+\sqrt{1-a_na_1}\ge n\sqrt{n-1}\]好处在于:使我们关注的平均驻点变成了一个常1向量(1, 1, ..., 1). 在符号推导过程中可以减少分式。我更在意的是在数值计算中比较计算驻点与平均驻点时,自动具有相对性(因为平均驻点的坐标都是1)。
现在交代一下楼上“常务”特征值的意义。
“常务”特征值`-4`所对应的特征向量为(1,1, ..., 1), 这是约束“球面”在驻点(1, 1, ..., 1)的法向。
而我们要考虑的梯度方向都是约束“球面”在驻点的切向。
所以在确定何塞矩阵的正定性时,这个“常务”特征值要排除在外,其符号不予考虑。
也就是说,在n<20时,平均驻点是极小值点(是不是最小值另当别论)
在 n>20时,平均驻点不(一定)是极值点。
全对称不等式的何塞矩阵
带拉格朗日乘数的何塞矩阵可以借11#的矩阵来描述,就是将其中的空档(表示0)都填上`b`.也就是 `A=(a-b)E+b I`
其中 `E`是 n阶单位阵,`I`是 n 阶全1矩阵,`a=(n-1)(2n-3), b=1-2n`.
由于各列向量之和等于`(a+(n-1)b)\{1, 1, ..., 1\}`, 所以它的“常务”特征值为`a+(n-1)b=2(1-n)`.
它的其它特征向量都是`a-b=2n^2-3n+2>0`,即是一个(n-1)重根.
所以全对称不等式的平均驻点是一个极小值点。 我们可以依次计算
\(\sum_{i=1}^n a_i^2=1\)
则下式可以成立的n值的问题,
\((1-a_1a_2)^{\frac{1}{k}}+(1-a_2a_3)^{\frac{1}{k}}+(1-a_3a_4)^{\frac{1}{k}}+\ldots+(1-a_na_1)^{\frac{1}{k}} \geq n(1-\frac{1}{n})^{\frac{1}{k}}\)
记\(a_i=a+x\sin(i\theta),\theta=\frac{2\pi}{n},t=\cos(\theta)\geq 1-\frac{1}{2}(\frac{\theta}{2})^2\)
则有
\(a^2=\frac{1}{n}-\frac{x^2}{2}\)
\((1-a_1a_2)^{\frac{1}{k}}+(1-a_2a_3)^{\frac{1}{k}}+(1-a_3a_4)^{\frac{1}{k}}+\ldots+(1-a_na_1)^{\frac{1}{k}}=\)
\((1-\frac{1}{n})^{\frac{1}{k}}(n-\frac{(tkn-kn-1+2k-t)n^2x^2}{2k^2(n-1)^2}-\frac{(-1+k)(-2k^2n+9k^2-k^2n^2+4t^2k^2n+2n^2t^2k^2-8n^2tk^2+20ntk^2-t^2k+2kn-2tkn-7k-4t^2kn-8tk+1+2t+t^2)n^3x^4}{16k^4(n-1)^4}\)
\(\frac{(-1+2k)(-1+k)(-1+15k-3t^2-t^3-3t+27k^3n+66k^3-36k^3n^2+3k^2n+9k^2n^2-3kn+3k^3n^3-59k^2-75tk^2+33tk-18t^2k^2+21t^2k-2t^3k^2+3t^3k+3tkn+18n^2t^2k^2+126nt^2k^3+108n^2t^2k^3-162n^2tk^3+45n^2tk^2-111ntk^2+15t^2kn-
141t^2k^2n+333ntk^3+18t^3nk^3-54k^3t^2n^3+9k^3tn^3+6n^3t^3k^3+36n^2t^3k^3-27t^3nk^2+9t^3kn-18n^2t^3k^2)n^4x^6}{288k^6(n-1)^6}+\ldots\)
\((1-a_1a_2)^{\frac{1}{k}}+(1-a_2a_3)^{\frac{1}{k}}+(1-a_3a_4)^{\frac{1}{k}}+\ldots+(1-a_na_1)^{\frac{1}{k}}=\)
\((1-\frac{1}{n})^{\frac{1}{k}}(n+\frac{(2nk\pi^2+2n^2-2kn^2-2\pi^2)x^2}{2k^2(n-1)^2}-\frac{(-1+k)(16nk^2\pi^4+22n^5k^2-56n^3k^2\pi^2+9n^4k^2-7n^6k^2+8n^2k^2\pi^4+8n^4k^2\pi^2+20n^3k\pi^2-4n^5k+20n^2k\pi^2-16n^4k-16nk\pi^4-4k\pi^4+4n^4+4\pi^4-8n^2\pi^2)x^4}{16k^4(n-1)^4}+\)
\(\frac{(-1+2k)(-1+k)(4n^6-117n^4k^2\pi^2+48n^2k^2\pi^4+639n^5k^3\pi^2-360n^3k^3\pi^4+72nk^3\pi^6-8k^2\pi^6+77n^6k^2-33n^6k^3-252n^7k^3+12\pi^4n^2-12\pi^2n^4+60k\pi^2n^5-84k\pi^4n^3+36k\pi^6n-72k^2\pi^6n^2-81n^7k^3\pi^2+27n^6k^2\pi^2+72k^3\pi^4n^5+72\pi^4n^4k^2+24k^3\pi^6n^3+84n^4k\pi^2-474n^5k^2\pi^2+444n^3k^2\pi^4+162n^6k^3\pi^2-432n^4k^3\pi^4+144n^2k^3\pi^6-108nk^2\pi^6+12k\pi^6-60n^2k\pi^4+138n^7k^2-36n^6k+27n^8k^3+18n^9k^3-27n^8k^2-4\pi^6-12n^7k)x^6}{144k^6(n-1)^6}+\ldots\)
\(k=2时, 0.513350523 \leq n \leq 19.22585828\)
\(k=3时, 0.341196893 \leq n \leq 14.46320971\)
\(k=4时, 0.254938944 \leq n \leq 12.90453360\)
\(k=5时, 0.203351866 \leq n \leq 12.13365364\)
\(k=6时, 0.169080492 \leq n \leq 11.67444479\)
\(k=7时, 0.144674917 \leq n \leq 11.36986355\)
\(k=8时, 0.126416830 \leq n \leq 11.15313106\)
\(k=9时, 0.112245830 \leq n \leq 10.99105912\)
\(k=10时, 0.100928912 \leq n \leq 10.86529820\)
\(k=11时, 0.091683357 \leq n \leq 10.76488149\)
\(k=12时, 0.083988499 \leq n \leq 10.68285267\)
\(k=\infty时,n=\frac{k\pi^2+\pi\sqrt{k^2\pi^2+4\pi^2-4k}}{2(k-1)} \leq \pi^2= 9.86960440108934\)
猜想A:若正实数\(a_i,i=1..n\)满足\(\sum_{i=1}^n a_i^2=1\),且\(k \geq 2 \in N\) 则
当\(n \leq 9\)时 \((1-a_1a_2)^{\frac{1}{k}}+(1-a_2a_3)^{\frac{1}{k}}+(1-a_3a_4)^{\frac{1}{k}}+\ldots+(1-a_na_1)^{\frac{1}{k}} \geq n(1-\frac{1}{n})^{\frac{1}{k}}\)
当然也可以进一步推广:
\(\sum_{i=1}^n a_i^3=1\)
则下式可以成立的n值的问题,
\((1-a_1a_2a_3)^{\frac{1}{k}}+(1-a_2a_3a_4)^{\frac{1}{k}}+(1-a_3a_4a_5)^{\frac{1}{k}}+\ldots+(1-a_na_1a_2)^{\frac{1}{k}} \geq n(1-\frac{1}{n})^{\frac{1}{k}}\)
记\(a_i=a+x\sin(i\theta),\theta=\frac{2\pi}{n},t=\cos(\theta)\geq 1-\frac{1}{2}(\frac{\theta}{2})^2\)
\(\frac{1}{2}(2a^2+3x^2)a=1\)
\((1-a_1a_2a_3)^{\frac{1}{k}}+(1-a_2a_3a_4)^{\frac{1}{k}}+(1-a_3a_4a_5)^{\frac{1}{k}}+\ldots+(1-a_na_1a_2)^{\frac{1}{k}}\)
\(=(1-\frac{1}{n})^{\frac{1}{k}}(n-\frac{(4nk^2s+4nks-8ns-1-4k^2+9s-4k)n^{2/3}x^2}{4(n-1)^2s^2}-\frac{n^{4/3}(-1+34s-8k+90s^3+268s^2n-92n^2s^2-187s^2+136ks+144k^2s-48ns^3-28ns-100s^3n^2+64s^3n^3-88nks-16k^4-24k^2-32k^3-88k^2s^2-96ks^2+32k^3s-
16k^4s^2+32k^4s-160n^2ks^3-80n^2k^2s^3+32n^2k^4s^3-32n^2k^4s^2-
248nks^2+128n^2k^3s^3-352nk^2s^2+176n^2k^2s^2-128n^2k^3s^2+256n^2ks^2+64nk^4s-128nk^4s^2+160nk^3s+256nk^2s^3+64nk^4s^3+240nks^3-224nk^3s^2+64nk^3s^3-32n^3k^2s^3-32n^3ks^3)}{64(n-1)^4s^4}+\ldots\))
\((1-a_1a_2a_3)^{\frac{1}{k}}+(1-a_2a_3a_4)^{\frac{1}{k}}+(1-a_3a_4a_5)^{\frac{1}{k}}+\ldots+(1-a_na_1a_2)^{\frac{1}{k}}\)
\(=(1-\frac{1}{n})^{\frac{1}{k}}(n-\frac{x^2(16\pi^4kn-24\pi^2kn^3+9kn^4-16\pi^4+24\pi^2n^2-9n^4)}{4(n-1)^2n^{10/3}k^2}-\frac{(-128\pi^4k^3n^7+192\pi^2k^3n^9+512\pi^8k^3n^2-2048\pi^6k^3n^4+1984\pi^4k^3n^6-384\pi^2k^3n^8-180k^3n^10+1024\pi^8k^3n-512\pi^8k^2n^2-2560\pi^6k^3n^3+2048\pi^6k^2n^4+3328\pi^4k^3n^5-
1600\pi^4k^2n^6-2400\pi^2k^3n^7-192\pi^2k^2n^8+576k^3n^9+180k^2n^10-2048\pi^8k^2n+5888\pi^6k^2n^3-7168\pi^4k^2n^5+4272\pi^2k^2n^7+90k^3n^8-684k^2n^9-256\pi^8k^2+1024\pi^8kn+512\pi^6k^2n^2-3328\pi^6kn^3-736\pi^4k^2n^4+3456\pi^4kn^5+672\pi^2k^2n^6-1296\pi^2kn^7-387k^2n^8+108kn^9+512\pi^8k-1280\pi^6kn^2+1728\pi^4kn^4-1296\pi^2kn^6+378kn^8-256\pi^8+768\pi^6n^2-864\pi^4n^4+432\pi^2n^6-81n^8)x^4}{64(n-1)^4k^4n^{20/3}}\)
\(k=2时,2.648553892 \leq n \leq 52.00497516\)
\(k=3时,2.670369687 \leq n \leq 38.97117505\)
\(k=4时,2.680487616 \leq n \leq 34.64777178\)
\(k=5时,2.686333543 \leq n \leq 32.49240996\)
\(k=6时,2.690142730 \leq n \leq 31.20171992\)
\(k=7时,2.692822049 \leq n \leq 30.34245977\)
\(k=8时,2.694809418 \leq n \leq 29.72934380\)
\(k=9时,2.696342290 \leq n \leq 29.26988020\)
\(k=10时,2.697560606\leq n \leq 28.91275158\)
\(k=\infty时,n \leq 26.06403100558733945,其中n 满足方程-16\pi^4+24\pi^2n^2-9n^3=0\)
猜想B:若正实数\(a_i,i=1..n\)满足\(\sum_{i=1}^n a_i^3=1\)且\(k\geq 2 \in N\),则
当\(n \leq 26\)时 \((1-a_1a_2a_3)^{\frac{1}{k}}+(1-a_2a_3a_4)^{\frac{1}{k}}+(1-a_3a_4a_5)^{\frac{1}{k}}+\ldots+(1-a_na_1a_2)^{\frac{1}{k}} \geq n(1-\frac{1}{n})^{\frac{1}{k}}\)
全对称式可否完全划分为若干个轮换对称式
哈哈,我打个岔。n(奇数)阶全对称式包含`\frac{n(n-1)}2`项,轮换对称式包含 `n` 项, 那么是否全对称式可以完全划分为`\frac{n-1}2`个轮换对称式?
换言之,`n` 阶完全图`K_n`是否可以划分为`\frac{n-1}2`条哈密顿回路?
`n`为奇素数时是可以的,容易构造划分,奇合数也行吗?
我试了一下 9 阶,可以划分为以下 4 条Hmt回路:
123456789
135824697
147529368
159483726
@Mathe会不会来个秒杀? hujunhua的结论应该成立
页:
1
[2]