manthanein 发表于 2016-3-19 18:14:19

光滑函数的两个定义?

维基百科上是这样的:光滑函数(smooth function)在数学中特指无穷可导的函数。

同济的《高等数学》是这样的(在脚注中):函数各点都有切线,且切线随着切点的移动连续转动。(大意如此,书不在手头。记忆如有错误请指出)

这两个定义等价吗?

mathe 发表于 2016-3-19 20:11:41

不等价。光滑还有不同的级别,前面那个相当于无穷阶,而后面那个仅一阶

kastin 发表于 2016-3-19 20:22:42

“函数各点都有切线,且切线随着切点的移动连续转动”——若把函数曲线看做位移曲线,那么切线斜率就是速度,切线岁切点移动连续转动,意味着速度连续变化,并不保证变化没有突变。即使这种变化是没有跳变的,也仅仅只能意味着加速度是连续的,即所谓的“加加速度”(jerk)是连续的,但加加速度曲线并不一定可导。如此推衍下去,同济版的说法根本无法精确地阐释光滑的概念。

附注:jerk就是加速度的变化率,在物理界内是这样称呼的 。中文翻译的叫法有很多,但比较常用的是“急动度”这一翻译(当然也可以形象地叫做“加加速度”)。这个物理量用的不多,主要用在材料疲劳以及交通舒适度方面(加速度变化不剧烈,人才感到舒服),非线性动力学等领域中中。
页: [1]
查看完整版本: 光滑函数的两个定义?